Rhino Robot's
XR Owner's Manual

1
.
s 5 »

' XR Owner's Manual.

Baga =+

gy t fe 0% VRGO
TABLE OF CONTENTS g e
CH/APTER 1: ABOUT THIS MANUAL
How to Use the Manual k 2 1 e 1-2
3 About the XR System . . WY MW g 1-3
Hardware i h & 13,
Software e 1-3
The System 1-4
Summary and specifications 1-3
CHAPTER 2: UNPACKING AND SETTING UP
* Unpacking The XR Arm . | 2-1
~ Mounting The XR On The Base - fZ
Unfolding The Arm "~ £ , 247 -
Unpacking The Controller 3 24
“MARK Il Communications Setup 2-6
Connecting The Motors . _ 2-8
CHAPTER 3: THE COMMAND SET
<return> fnmate a motor move s ROER PR T : ; 3-8
? . Returndistance remaining -~ - . _ 3-3
AtoH Set motot movement value =, v 3-4
i Read limit switches C-H - < oy N T
J Read limit switches A-B and mputs 1-4 : 3-6
K Read inputs 5-8 g _ 3-7
L Turn AUX #1 on 3-8
M » Turn AUX #1 off 3-9
N 7 TunAUX#2on . ‘ < 3-9
o Turn AUX #2 off ' : - +810°
P . Set output bits high , : 310
Q ‘Reset controller ' : 3-10
R Set output bits low , 3-11
X Stop motors : . 312

Page 2

XR Owner's Manual
CHAPTER 4: RUNNING THE XR WITH A HOST COMPUTER

General Interfacing Instructions 4-1

CHAPTER'5: RUNNING THE XR-3 WITH AN APPLE lle

lnterfacmg . 5-1
~Settirig.Up Communications 5-2
Movmg The Motors With The START Command 5-3
* More About The START Command 5-6

'The QU_ESTION Command 5-7
.-~ "How The.Question Command Works 5-8

. Making Longer Moves 5-8
The- STOP Command 5-18
The INQUIRY Command 5-14
The:STOP and INQUIRY commands-Sample Program - ,5-18
Summary of Commands and Subroutines 5-21
Using the Input/Qutput Commands . 5-24
.J Command S e 5-25

K Commands 5-26

- Commands L, M, N, O 5-26

P and R Commands 5-27

Yo
b2

CHAPTER 6: RUNNING THE XR-3 WITH AN IBM-PC

Interfacing 6-1
Setting-Up Communications 6-1
Move The Motors With The START Command 6-2
.. More About The START Command 6-3
The QUESTION Command 6-4

© = . How The Question Command Works 6-5
: . Making Longer Mowes ~. Ea 6-5
The STOP Command 6-9

' The INQUIRY Command 6-10
The STOP and INQUIRY commands- Sample Program : 6-14
Summary of Commands and Subroutines) 6-18
Usirig the Input/Qutput Commands’ 6-20
JCommand - 6-21

- K Commands ' 6-22
CommandsL, M, N, O 6-22

Page 3

XR Owner's Manual

P and R Commands 6-23-

CHAPTER 7: MAINTAINING THE XR-3

Waist Drive :
Shoulder AR
Elbow _ il
Hand L7 e Ly
Wrist - alv
Finger o 7-90
General Maintenance ‘ SRR o 2

CHAPTER 8: IF YOU HAVE A PROBLEM

CHAPTER 9: PARTS LISTS AND FIGURES

Base
Body
Lower Arm
Upper Arm 9-7 ..
Hand & Wrist Drive 99
Finger Assembly and Linkage 9-11
Typical Motor Components ' 9

CHAPTER 10: Hard Home Programs
For the Apple lle . 10-2 1

For the IBM ©U10-87

APPENDIX: TUTORIAL ON DC SERVOS AND OPTICAL ENCODERS Al

Page 4

XR-3 Series

Marklli
Controller

Switches to reverse polarity of the two
auxiliary ports

Built-in power supplies

Carrying handles for convenience s

Optlonal switch for use of olther
computer or teach pendant modes

The increasing sophistication of
automated manufacturing
systems has stimulated the need
for both existing and future
workers to understand

the concepts that make such
systems work. Schools and
fraining programs need to
prepare students and trainees
for use of these increasingly
complex manufacturing
technologies. As the leader in
instructional robotics, Rhino
Robots, Inc. recognizes the need
for students and industrial
trainees to become knowl-
edgedable about input/output,
sensor control and workcell
operation in order to
adequately prepare for work
with real world industrial
robotic workcells and

ER o
ER|ESMARKIIICONTROLL)

Motor power indicator light

8 Input lines

automated systems.

The Rhino Mark lll controller, like
the robotic arm it controls, is
specially designed for teaching,
industrial training and research
purposes. It provides unlimited
potential for simulating

robotic control in an industrial
environment,

The built-in /O of the Mark lil
controller affords Rhino users
with tremendous opporunities
for workcell experimentation.
Like all XR Series products, the
Rhino Mark lll controller is an
ideal vehicle for introducing
students at all levels to the
subject of robotics by giving
them opportunities for hands-on
interaction with a small rolbotic
system that costs a fraction of
what an industrial model costs.

2 auxlilary, non-encoded ports

" ®

ROBOTS, INC.
— weld leaden in insthuctional rehelics

XR-3 SERIES MARK Ill CONTROLLER

FEATURES

VALUE — Unlike most robotic controllers, the Mark Il
controls not just one type of robot, but two. Both the XR
Series robotic arm and the Rhino SCARA robot can be
controlled by the Mark Il controller,

/O CAPABILITIES — The bullt-in /O of the Mark Il
controller offords Rhino users with unprecedented
opportunities for workcell experimentation. It has 8
optically encoded ports, 6 to run the robot and 2 to run
optically encoded motorized XR accessories for work-
cell experimentation. In. addition, it has. 2 DC motor
ports with switches to reverse direction of the motors, as
well as 8 additional output and 8 input lines which can
be used tg operate sensors and signals such as exist in
the normal industrial environthent.

VERSATILE — Together with Rhino’s & axis, plus grip-
per, articulated robot arm, the Mark lll controller can
be used for a varlety of applications to provide effi-
cient training fhidf transfers readily to the industrial
setting without'the costs of using a full scale robot.
These applicafiéns include teaching of froubleshoot-
ing and mdm}encmce techniques, learning about
fundamentals$; of industrial automation and program-
ming, Conduc‘rmg feasibility studies, experimenting
with computer, conirol of machinery, etfc,

CIRCUIT BOARDS ARE READILY ACCESSIBLE — The ac-
cessibility of the cifcult boards facilitates teaching of
circuit design and troubleshooting. Full schematics
down to chip level are.available. Key ICs are socket
mounted for eqsy tésting and replacement. The Rhino
is the only instructional controller on the market that is
completely occe33|b|e for teaching and research
puUrposes.

ONE OF THE LONGEST WARRANTIES IN THE ROBOTIC
INDUSTRY — Rhino offejs a 1 year mechanical warranty
and 6 months electricdl warranty. Unlike most other
warranties for robotic controllers, the Rhino warranty is
not voided if the user opens the controller.

Rhinc Robotsinc. reserves the right to change any and
all specifications and prices without prior notice.

Rhino Robolts, Inc.'

308 South State Street

P.O. Box 4010

Champalgn, lliinols 61820 USA

Telephone 217-352-8485

TELEX: 3734731 RHINO ROBOTS C

- . .'1 e

Rhino hds’ representohves throughout the USA, Canada
and a large number of giher countries. Please call or write for
the name of fkie Tepredentative in your area.

RSB LS

Model Mark lll Contraller
Part Number FG0792
Applications | Education, Industrial training, research, |
workcell modeling
Conflguration 8 ports for optically encoded motors to

operate the XR robot and accessories.
Each port provides 1.6 amps at a
nominal 20 volts for motor power,
microswitch detection and optical
encoder lines.

2 ports for non-encoded motors to
operate workcell equipment. Each port
provides 1.6 amps maximum at a
nominal 20 volts DC.

8 inputs to read sensors for workcell
development.

8 TIL level outputs to send signals for
workcell development.

Each line provides 24 milliamps low
and 14 milliamps high.

Microprocessor

Communication

" RS232C using ASCII characters

6502A

Interface |
Deceleratlon | Built In on encoded ports for smoother
robot operation
Compatibility Can be run with virtually any computer
with a serlal R§232C interface.
Commands START to move motor

QUESTION to check status of motor error
register

STOP to stop movement of a motor
INQUIRY to read microswitches on
motors C to H

J 1o read status of microswitches

A & B and inputs 4-1

K to read status of Inputs 8-5

L to turn ON auxiliary port 1

M to turn OFF auxlllary port 4

N to turn ON auxiliary port 2

O to turn OFF auxlllary port 2

P to tell controller that next digit It
receives addresses output line to be
set high

Q to reset controller

R 1o tell controller that next digit it
receives addresses output line to be
set low

Software Available
for Apple lle or
IBM PC

RoboTalk, robotic control language,
Rhino-VAL emulation package,

XYZ demo program, teach emulator
demo program, extended version of
Applesoft BASIC with Rhino Com
Language Card (Apple only).

Warranty

6 months on electrical parts,
12 months on mechanical parts

Trademarks

VAL is a tfrademark of the Unimation
Corporatlon. RoboTalk Is a trademark
of Rhino Robots Inc.

LNG.

ENGINEERED AND
MANUFACTURED
IN THE USA

SS§-0792

XF: Owner's Manual

CHAPTER ONE

ABOUT THIS MANUAL AND THE XR SYSTEM

You are about to explore robotics the right way - with the XR Series robot and the MARK: . -

11l controller from RHINO Robots Inc., the werld leader in instructional robots.

5emn| Optional
g Teach Pendant
I D
MARK Il |\j A XR-3
Controller L i i Robot Amn
=)
o

5 B e N
R ROA s
-

To Host Computer

Take a few minutes to read this section first. ¥ provides a good map for following the
rest of the manual. Because the XR is part of a syctetr, we have used a loose leaf
format. The manual assumes you have the basic system:

The XR-3 Series Robot Arm
The MARK lII Controlier

When you purchase any of the system accessorieg, you will receive documentation in a
format that allows you to insert it into this basic manua.. -

Page 1- 1

XR Owner's Manual

HOW TO USE THIS MANUAL

This manual tells you everything you need to know to begin exploring robotics with the
XR system.

1.

Start with Chapter Two. It will guide you through unpacking, mounting,
connecting and testing your XR.

Move on to Chapter Four, "Running The XR With A Host Computer." If
you have one of the computers listed at the beginning of Chapter Four, go
directly to Chapter Five or Six. Each section gives commands, programs,
and programming techniques tailor-made for your computer.

If you do not own one of the computers covered in Chapters Five or Six, use
Chapter Four, "General Interface Instructions.” Connect the controller to your
computer according to the instructions in that section. Then, choose the
section that covers a computer most similar to your own. For example, if
you have an IBM compatible machine, choose the IBM section. Follow that
section and adapt our sample programs to your machine as necessary.

Read Chapter Three as a Reference Guide. Chapter Three is used

when complete information on each of the MARK llI controller commands is
needed. Example programs are given to help you understand the usage
and format of the various commands.

Read Chapter Seven after your first session with the XR. Chapter
Seven explains important maintenance checks and procedures that should
be performed periodically.

If you need help, go to Chapter Eight for troubleshooting procedures. If

" you need our help, Chapter Eight gives information about the RHINO hotline,

and how to send a component back to us if necessary.

Chapter Nine contains parts lists, exploded-view diagrams and ordering
information.

Chapter Ten contains program listings for sample hard home routines.

The Appendix gives a short Tutorial on the principles of servos, closed
loop control systems and the use of incremental encoders.

Page 1- 2

XR Owner's Mianual

ABOUT THE XR SYSTEM
THE COMPLETE EXPERIMENTAL SYSTEWN WITH ACCESSORIES.

The XR system is the complete EXPERIMENTAL BROBOTIC system; complete in that it
contains

1. Robot Hardware
2. Controller Hardware
3. Software

the three basic components of any computer controlled system.

ROBOT HARDWARE:

The robot hardware consists of a five axis revolute coordinate robot arm with a motor
driven gripper. All axes of the robot are controlied by DC servo motors using incremental
optical encoders for feedback and contain limit switches which are used to position the
robot to a hardware home position. At full extension (about 18 inches), the robot has a
liting capacity of one pound. Construction materials are aluminum which provides
strength with low weight.

CONTROLLER HARDWARE

The MARK Il is a microprocessor based eight axis motor controller which also provides
two 20 VDC unencoded motor ports, eight TTL output lines and 16 TTL input lines (8
from the 1/O panel and 8 from the axis limit switches). An RS-232c communication port is
provided for use with a host computer allowing the computer to issue commands which
operate the robot and the other features of the MARK lll controller.

SOFTWARE:

Two types of software come with the Rhino system: diskette based for use in an Apple or
IBM PC computer and the firmware which resides in permanent memory in the MARK [l|
controller. The controller is designed to accept kernel commands via an RS-232¢
communication port. The robot and its 1/Q are controlled by these kernel commands

Page 1- 3

XR Owner's Manual

which can be combined in an unlimited number of ways to create everything from simple
robot movements to comprehensive robot languages.

The command structure of the XR system is designed to fully control the XR-3 robot and
all the features of the MARK Il controller and to interrogate the status of the
controller-robot system. This ability to get information from the controller allows more
sophisticated control strategies to be worked out by the investigator.

The diskette based software includes several programs which demonstrate how
programs can be written in BASIC to accomplish various positioning tasks such as XYZ
transformations. Also included is Rhino's generic robotic control language called
RoboTalk™. This language allows the user to learn and understand the principles of
robot control using software and provides a base for progressing on to higher level
languages.

THE SYSTEM:

The system is designed so that the students, trainees, investigators and researchers can
meet the system at the level that suits them best.

For initial familiarization and orientation, all that is needed is the basic teach pendant,
controller and the robot arm. All aspects of five axis robot movement can be
demonstrated and experienced by the user without ever writing a computer program.

For those users that have Apple lie and IBM-PC personal computers available, Rhino
provides full software support and teaching aids. Courseware suitable for factory floor
personnel as well as students is also available from Rhino. The courses designed with
the courseware may be geared for either one or two semester.

Using a host computer to control the XR system adds a completely new dimension to the

study of robotics. This is best divided into two major sections, one for the academic
community and one for the factory floor.

Page 1- 4

XR Owner's Manual
SUMMARY AND SPECIFICATIONS

That's the XR Series in a nutshell. The following tables give the specifications for the XR
robotic arm.

BASIC SPECIFICATIONS FOR THE XR ARM

Vertical Reach 34 inches 86 cm
Radial Reach 24 inches 60 cm
Lifting Capability (arm extended) 1.0 Ibs. 0.45 kg
Weight of XR-3 17 Ibs. 7.7 kg
Weight of Mark Ill controller 27 lbs 12.3 kg

RESOLUTION AT EACH AXIS

Axis Motor Resolution

Fingers A not applicable

Wrist Rotation B 0.18 degrees theoretical
Wrist Flex C 0.12 degrees theoretical
Forearm D 0.12 degrees theoretical
Shoulder E 0.12 degrees theoretical
Waist F 0.23 degrees theoretical
Repeatability (full extension , at grippers)......... 0.25 inches actual

MOTOR GEAR RATIOS AND FINAL REDUCTIONS

Axis Motor Gear Ratio Encoder steps /Degree of Axis Movement
Fingers 96/1 not applicable

Wrist Rotation 165.4/1 5.5

Wrist Flex 66.1/1 8.8

Elbow 66.1/1 8.8

Shoulder - 66.1/1 8.8

Waist 66.1/1 4.4

SPEED AT EACH AXIS

Page 1-5

Axis
Fingers

Wrist Rotation
Wrist Flex
Elbow
Shoulder
Waist

XR Owner's Manual

Speed

(degrees/second)
1 sec. to open fully
1 sec. to close fully
32

45

30 -
20 — 2
60 — F

Page 1- 6

XR Owner's Manual

CHAPTER TWO

UNPACKING and SETTING UP

UNPACKING THE XR ARM

As you unpack, be careful not to tear the box or damage any of the packing materials.
You can use them later to ship, store or move the XR system. You will use these
containers if the robot has to be returned to the factory for service.

The XR arm comes cased between two foam packing shells. Located in the top of the
packing shells is a cavity which contains two manuals; the Owner's Manual and the
Software Manual. Set these aside for use later.

Now grip the foam shell, lift it out of the box and set it down in an upright position. You
can most easily do this by having a helper hold the box while you pull the shell up and
out: do not reach through to grasp the arm itself - you may reach in and damage the arm.

With the shell out of the box, you can see a cutout in each foam shell, see Fig 2.1.
Through one of the cutouts locate two motors. Gently tip the shell on its side so that this
cutout and the two motors face up.

NOTE: The encoders on each motor are part of the optical feedback system. This is the
one relatively fragile component on the XR. Be careful not to grab the robot arm by the
motors, encoders, or other small parts.

Now, carefully lift the top foam shell up and off, lift the arm from the bottom shell and set
the arm base-down on your work surface. See Fig 2.2.

o HOUSING

271/@55? AU SINET
e 2/ s 2.2
Page 2-1

XR Owner's Manual

il

Figure 2-3
The XR-3 Robot

MOUNTING THE XR ARM ON A BASE

In this position , the XR appears deceptively short and stocky. However, when the arm is
extended it becomes top-heavy and can tip over. The XR needs to be anchored to the
work surface to prevent damage.

Use The Rhino Aluminum Base

It you have purchased a Rhino aluminum base, unpack it and lay it on your work surface.
Included with the base is a small hardware package containing rubber feet, threaded
studs and thumbscrews. First install one rubber foot in each of the corners of the base
bottom (the bottom is the smooth side). Remove the two one inch long threaded
Allen-head studs and screw them into the threaded holes in the base top so that 1/2" of
each stud extends up from the base. Thread one of the thumbnuts onto a stud just
enough to engage the threads, then tighten the thumbnut one turn.

Lift the robot arm and identify the slot at the front of the base. The front is the side with

the chain sprocket near the base. Slide the slot at the front of the base around the stud
and under the thumb nut, see Fig 2.4.

Page 2-2

XR Owner's Manual

Align the slot at the rear of the robot base with the remaining stud. Slide the arm back
until the back of the rear slot butts against the rear stud. Screw the other thumbnut onto
the rear stud and tighten both thumbnuts to fasten the robot to its base, see Fig 2.5.
Position the arm so that the front of the robot is to your left as you face the arm.

Al 2

Vounting The Arm On Your Own Base
If you did not order the RHINO-made base, you will still need to fasten the arm to

something. You can clampitto a table, bolt it to a table, or make your own base. To
mount the arm, follow these guidelines:

Page 2-3

XR Owner's Manual

1. Drill mounting holes at 6.50" centers.

2. Make your base about 12"x12". Any larger, and it may interfere with system
components like the conveyor. Any smaller, and it will tend to be unstable.
The base must also be heavy enough to hold the arm steady. As a guide, if
you decide to use plywood, it should be at least 0.50" thick.

UNFOLDING THE ARM

Next, unfold the XR arm. To do so, gently apply even upward pressure on the joint that
connects the lower arm to the upper arm. Do not use an abrupt movement since this
may damage the high gear reduction motors. The application of steady but firm upward
pressure on the joint will move the arm up and out of the nesting position and will clear
the gripper from the two large 72 tooth sprockets on the robot body.

UNPACKING and CONFIGURING THE EIGHT AXIS CONTROLLER

Next, unpack the controller. Notice the two small padded paper bags; one contains the
optional Teach Pendant hand unit, the other contains the Rhino data cable, the IBM
adapter plug and the Tool kit. Your tool kit contains every tool you need to perform
mechanical maintenance. Remove the two bags and set aside for now. You will also
find the power cord in the controller carton. Lift the controller out with the two styrofoam
shells on its ends. Remove the styrofoam but remember to save the packaging.

Page 2-4

XR Owner's Manual

— LED
Mode Switch Aux Port
—— Teach Reversing
Pendant Port Switch
AUX Por’(s—\ l_ Reset
‘ Ay
(:

£
by

N
RHINO ROBOTS |NC \“;u‘ﬁ B .
oh oo |0 €
o

A B C D E F G H
:,:Tnmmmmmmm (LTI) T

/[\
 m— |
|_ Outputs — |10 uts)
Encoded Motor Ports Motor Power
Switch

Host Computer RS-232C Port

Power Indicator

Figure 2-2
The front of the Mark il controller

Set your controller behind the arm (to the right as you face it), with the front panel facing
you.

On the Mark 11l controller, locate the main power rocker switch on the back panel of the
controller cabinet. Make sure it is OFF (0). Locate the motor power switch on the
right-hand side of the front panel and make sure that it too is OFF.

Power Cord Connector Back of
Controller

Main Power Switch

[—- Serial Numbers
DHHDUUU? 0000000 onaoooo™ ooooooto

lg s |
S] ’ [
Fuse Cover

Figure2-3
Back of the controller

XR Owner's Manual

Now locate the power cord. Plug the female socket end of the cord into the male
connector just below the main power switch, on the back panel of the controller. Plug the
other end of the cord into a grounded 115 VAC outlet. If you must use a three-pronged
adapter, make sure it is grounded.

NOTE: The Mark IIl has a switch to select power voltage. That switch is located below
the main power switch on the back of the controller cabinet. As shipped, the switch is set
to 120 volts. To use the Mark Ill with a 220 volt power source, this switch must be set to
220 and the internal power supply must be modified. Contact the factory if the higher -
voltage is to be used.

MARK Ill COMMUNICATIONS SETUP

The MARK 1II controller comes from the factory with its communication ports configured
for 9600 baud, 7 data bits, 2 stop bits and even parity. This settings allows compatability
with all of Rhino Robots software offerings; if you plan to use only Rhino software or have
host computers that can be configured for this communication setup, you can proceed
without having to change the default settings.

However, if you need to change the communication settings, the controller can be
configured for a lower baud rate or other parameters. To change these settings, open
the controller cabinet by removing the top cover. Locate the 4 position DIP switch on the
lower controller board: it is located in the rear right corner as you look from the front of
the controller.

Switch number 1 should always be set ON (0 or Open). The remaining switches should
be set as follows: (0=Open 1=Closed)

2-3-4 Data Stop Bit Baud

Setting Bits Bits Parity Rate

111 7 2 Even 9600 Default
110 7 2 None 9600

101 7 2 Odd 9600

100 7 2 None 300

011 8 1 None 9600

010 8 1 Even 9600

001 8 1 Odd 9600

000 8 1 None 300

Page 2-6

XR Owner's Manual

Rectifier Regulated Power .
Bridge ——I (Supp]g —— Power

connector
=—— V|
X-former

} Controlier

Board
0

[l B

Board

|/0 Board

% Teach Pendant
L!

r Reset |_ Power Connector
[| o | o | c— E

_F'- 1L 1—C—
Pin 1 N\

EPROM
[1] Location
L 1L] 1 R | : P
BB 1 |
L L RS-232 to computer Port
RS-232 to Controller

TEACH PENDANT COMPUTER CARD

o
)
«©
LQ
N
1)
-~

XR Owner's Manual

Motor Power
|—- RS-232to TP — EPROM [- Baud/Extend

E [:] [j | lQ D Power
[‘EHDD: -—Pin&jm []
= Q0000000000
oododad o000
IR
—=Qoooooooooon &
g o g o e g o o [] EI Reset

CONTROLLER COMPUTER BOARD

CONNECTING THE MOTORS

Now you are ready to connect the motors to the controller. Start by locating the bundle of
six flat ribbon cabies at the rear of the robot body. Pull the bundie out and away from the
robot body, remove the holding strap and straighten the cables.

All cables are labeled with the motor identifier to which they are connected; the letters
correspond to the controller motor ports as labeled on the front panel. Insert the A motor
cable first making sure that the plug is oriented such that the flat cable exits the plug
body from the bottom. Continue inserting the remaining cables (B-F) in the same
manner.

If you have the optional Teach Pendant, plug the large flat ribbon cable into the 25 pin
connector labeled Teach Pendant.

The XR Robot system is now ready for operation. The following sections will describe
the operation of the MARK IIl controller and how it is to be interfaced with a host

computer.

Page 2-8

XR Owner's Manual

CHAPTER THREE

THE COMMAND SET

THE MARK Ill CONTROLLER COMMANDS

The command set of the XR Robot - Mark Ill Controller system has been designed to
allow the complete control of the Mark Ill controller. Through the use of only 14 basic
commands, the user can control the position of all eight motors, read any of the 16 input
bits, set any of the 8 output bits and control the AUX ports. All of Rhino Robot's software
uses these kernel commands to create the higher level languages, such as RoboTalk
and Rhino-VAL.

The MARK Il controlier has the following commands:

Command Description
|
<return> | Carriage return (initiate a move)
? | Return distance remaining
A-H | Set motor movement value
1 | Inquiry command (read limit switches C-H)
J | Inquiry command (read limit switches A-B and inputs)
K | Inquiry command (read inputs)
L | Turn Aux #1 port ON
M | Turn Aux #1 port OFF
N | Turn Aux #2 port ON
o | Turn Aux #2 port OFF
P | Set output bits high
Q | Controller reset
R | Set output bits low
X | Stop motor command

The MARK Ill controller accepts commands as ASCII characters; each character is acted
upon immediately upon receipt. Unlike most computer peripheral equipment, the
controller does not wait for the receipt of a carriage return to signify a command
completion; in fact the carriage return is considered a command itself.

When the motor move command letters A-H are received, the motor specifier is stored in
the motor buffer over writing its previous contents. The receipt of a motor specifier also

Page 3-1

XR Owner's Manual

sets the direction buffer to the plus direction and clears (sets to zero) the move count
buffer. Any sign character (+ or -) is stored in the direction buffer over writing its previous
contents. When a number digit is received, the contents of the move count buffer is
multiplied by ten and the new digit is added to the product. In this way the move count
buffer correctly accumulates a multi-digit number.

When a carriage return character is received, the controller adds or subtracts the amount

in the move count buffer to the value in the error register pointed to by the motor buffer. If
the direction buffer has been set to a plus the amount is added; if the direction buffer has

been set to a minus the amount is subtracted.

The following illustration shows the relationships of the input buffers and the motor error

registers. In this example, a C command was received followed by a -50. When a
carriage return is received, the C motor error register will be decremented by 50.

C - o0

Motor Direction Move Count
Buffer Buffer Buffer
\‘\\ +
\\ o-r
Error AlleBllclIDI[EI|[F|[a][H
Registers
Figure 3.1

, Processing of a Motor Move command
The receipt of a carriage return can have no effect on the controller if the move count
buffer is zero, as it is after a motor specifier (A-H) has been received. You can take
advantage of this fact if you want to terminate all commands sent to the MARK |1l with a
carriage return which would be the case if you were using standard PRINT statements in
BASIC to control the robot. Preceding all commands with a motor specifier allows you to
use the carriage return.

in the following command descriptions, the format and the examples of the commands

Page 3-2

XR Owner's Manual

will illustrate the use of the leading motor specifier. This will lead to a more intuitive
understanding of the command set.

[l

<returns> Initiate a motor move

Whenever a carriage return is received from the host computer, the controller takes the
move count in the motor move count buffer and adds it to (or subtracts it from depending
on the sign of the direction buffer) the value in the error register of the motor that is
addressed by the motor buffer.

Thus, if the command sequence C-40 <return> is sent to the controller, a C will be
stored in the motor butfer, a minus will be stored in the direction buffer and 40 will be
stored in the move count buffer. Upon receipt of the <carriage return>, this data is
transferred to the C error register and the controller will start the C motor in the negative
direction with the intention of moving it 40 additional encoder steps in that direction. If
the controller now receives a carriage return only, it will add another -40 to the error
register for the C motor. With the above sequence of commands, the motor will
eventually make a move of -80 total encoder counts.

? Question command

Requests steps remaining to move on motors A thru H.
When making long moves it is necessary to determine how far a motor has to move
before more move information can be sent to the controller. The command used to
determine how far a motor has yet to move is the Question command.
The format of the command is

[«<motor ID>]<?> <return>
Examples of the command as issued from a BASIC program:

PRINT "D?" <return>

PRINT "A?" <return>

PRINT "C?" <return>

where the first letter identifies the motor error register to be interrogated and the question

Page 3-3

XR Owner's Manual

mark indicates that the remaining error count for that motor is to returned to the host
computer. As always, the controller adds 32 to the error value before returning it to the
host computer. Adding 32 to the count prevents the controller from sending ASCII
command codes to the host computer. The controller always sends the absolute value
of the error signal; it does not send the direction of the error signal. This means that you
can determine how far a motor still has to move but cannot determine whether the move
is to be in the positive or the negative direction.

NOTE: Using the "?" command does not re-issue the move in the move buffer because
the motor ID letter preceding the "?" always clears the move buffer.

AtoH Start motor commands

Starts motors A to H and moves them a number of encoder steps

The start command is used to instruct the controller to start a given motor and to move it
in a given direction by a given number of encoder steps. The value is added to the move

in progress.
The format of the command is
<motor ID>[<sign>]<encoder counts><return>

where <motor ID> is an uppercase letter A-H, <sign> is an optional + or - character (if no
character is present a + is assumed) and <encoder counts> is a number from 0 to 127.

Example: for programming in BASIC:
PRINT "C-93"

The above command will move the "C" motor in the negative direction by an additional
93 encoder positions. The positive sign is not needed for moves in the positive direction
and may be omitted. The carriage return is used to execute the command. Only one
motor can be addressed at one time. Other samples of the command are:

B-6 <return>
A+21 <return>
C33 <return>
D-125 <return>

Page 3-4

XR Owner's Manual

H <return> (clears the move count buffer, therefore no move is made)
<return> (repeats the previous move)

Sending only a carriage return without a2 motor move, after a motor move command,
repeats the last motor move command. Even carriage returns that are part of another
command (discussed later) will re-issue the move command. In order to cancel a move
command that would be carried out by the receipt of a carriage return, all commands
should be preceded by a motor ID character (A thru H). Any motor ID letter sets the move
buffer to zero if there are no numbers attached to it. Once the move buffer is cleared,
other commands with carriage returns will not activate the move instruction. For
example the commands similar to the following will clear the move buffer.

A <return>
ClI <return>
EJ <return>
BL <return>
Once the move buffer is cleared, other commands may be issued without the motor ID

characters. The move buffer is active after each non-zero motor move command. It
should be cleared before using commands when necessary.

I I-Inquiry command
Returns status of microswitches on motor ports C, D, E, F, G, and H

The INQUIRY command allows the user to interrogate the status of the 6 microswitches
onthe C, D, E, F, G and H motors. The format of the command is as follows:

[<motor ID>]<I><return>
Where the motor ID is included if the move buffer is to be cleared.
Sample uses of the command as issued in a BASIC program:

PRINT "I" <return>
PRINT "Al" <return> (Clears the move buffer first)

The command returns the status of the 6 microswitches in one byte. The returned byte is
interpreted as follows after subtracting 32:

Page 3-5

XR Owner's Manual

Bit Motor
0 LSB C

1 D

2 E

3 F

4 G

5 B

6 o

7 MSB

The controller adds decimal 32 to the byte before transmitting it to the host computer so
that no control codes will be transmitted to the host computer. Upon receipt of the
returned byte, it is the users responsibility to subtract 32 from the byte before using it. A
closed microswitch is seen as a 1 (one). An open microswitch is seen as a 0 (zero).

Bits 6 and 7, the most significant bits, are not used.
The host computer must be ready to receive the inquiry byte before sending the

controller another command. See detailed examples under the sections on running the
robot with the Apple lle and the IBM-PC.

J J-Inquiry command

Returns status of microswitches on motors A and B and input lines 1, 2, 3
and 4

The J-INQUIRY command tells the controller to send back the status of the
microswitches on motors A and B and the status of input lines 1, 2, 3 and 4 of the 8 line
input port. The returned data byte is of the form 00BA4321+32, where A and B are the
levels of the A and B motor limit switches and 4, 3, 2, and 1 are the levels of the input
lines 4 through 1. As with all other information returned to the host computer, 32 is
added to the returned value to ensure that no ASCII control character is returned to the
computer. You use the J-INQUIRY command just like the IINQUIRY command.

The format of the command is
[<motor ID>]<J> <return>

where the <motor ID> has to be included if you want to clear the move buffer.

Page 3-6

XR Owner's Manual

Examples of the command as issued from a BASIC program:

PRINT "J" <return>
PRINT "CJ" <return> (Clears the move buffer first)

When interpreting the bits returned by the controller, a value of 0 means that the input is
low (or that a microswitch is closed). A value of 1 means that the input is high (or that a
microswitch is open).

Bit Meaning

O LSB input 1

input 2

Input 3

Input 4

Motor "A" Limit Switch
Motor "B" Limit Switch

MSB s

~NO O WN—

Bits 6 and 7 are not used

The controller adds decimal 32 to the byte before transmitting it to the host computer so
that no ASCII control codes will be transmitted to the host computer.

The host computer must be ready to receive the inquiry byte before sending the

controller another command. See detailed examples under the sections on running the
robot with the Apple lle and the IBM-PC.

K K-Inquiry Command

Returns the status of input lines 5, 6, 7 arrd 8.

The K-INQUIRY command tells the controller to send back the status of inputs 5
through 8 of the 8 line input port. The returned data is of the form 00008765+32, where

8,7, 6, and 5 are the levels of input lines 8 through 5. The format and usage of the K
command is similar to the | and J commands.

Page 3-7

XR Owner's Manual
The format of the command is
[«motor ID>]<K> <return>
where the <motor ID> has to be included if you want to clear the move buffer.
Examples of command as issued form a BASIC program:

PRINT "K" <return>
PRINT "EK" <return> (Clears the move buffer first)

The command returns values that may be interpreted as follows after subtracting 32 from
the byte received.

Bit Meaning
0LSB Input 5

1 Input 6
2 Input 7
3 Input 8
4

5 e

6 wuis

7 MSB

Bits 4, 5, 6 and 7 are not used

The controller adds decimal 32 to the byte before transmitting it to the host computer so
that no ASCII control codes will be transmitted to the host computer.

The host computer must be ready to receive the inquiry byte before sending the

controller another command. See detailed examples under the sections on running the
robot with the Apple lle and the IBM-PC.

L Turn Aux. Port #1 ON
Turns Aux Port #1 ON

The L command turns auxiliary port 1 ON. Auxiliary port 1 provides 1 amp at -20 volts
DC. The forward/reverse switch above the aux. connector determines the polarity of the

Page 3-8

XR Owner's Manual
pins and can be used to reverse a PM DC motor connected to the port.
The format of the command is
[<motor ID>]<L> <return>
where the <motor ID> has to be included if you want to clear the move buffer.
Examples of command use as issued in a BASIC program:

PRINT "L" <return>
PRINT "CL" <return> (Clears the move buffer first)

M Turns Aux. Port #1 OFF

Turns Aux Port #1 OFF

The M command turns auxiliary port 1 OFF. You use it just as you would the L
command. See description of L command.

N Turns Aux. Port #2 ON

Turns Aux Port #2 ON
The N command turns auxiliary port #2 ON. Auxiliary port #2 provides 1 amp at +20
volts DC. The forward reverse switch above the aux. connector determines the polarity
of the pins and can be used to reverse a PM DC motor connected to the port.
The format of the command is

[<m'otor ID>]<N> <return>
where the <motor ID> has to be included if you want to clear the move buffer.

Examples of command use as issued by a BASIC program:

PRINT "N" <return>
PRINT "CN" <return> (Clears the move buffer first)

Page 3-9

XR Owner's Manual

O Turns Aux. Port #2 OFF

Turns Aux Port #2 OFF

The O command turns auxiliary port 2 OFF. You use it just as you would the N
command. See description of N command.

P Set Output Line High

Sets an Output line HIGH
The P command tells the controller that the next digit it receives identifies the output line
to be set high. The 8 output lines of the output port are numbered from 1 to 8. The

output lines are set high during startup and after a reset. The MARK Il controller output
lines provide TTL level signals.

The format of the command is

[<motor ID>]<P><output line numbers> <return>
where the <motor ID> has to be included if you want to clear the move buffer.
Exambles of command use as issued by a BASIC program:

PRINT "P3" <return>
PRINT "AP6" <return> (Clears the move buffer first)

Q Reset

Resets the entire Controller
The Q command tells the controller to reset itself. The controller will clear all of its

internal registers, turn off all motors, turn off all the auxiliary ports, set all output lines high
and reset its communication port according to the BAUD switch in the controller.

Page 3-10

XR Owner's Manual
The Q command is a convenient way of resetting the controller (in software) without
having to press the reset button.
The format of the command is
<Q> <return>
Examples of command use as issued in a BASIC program:
PRINT "Q" <return>

Complicated software programs often start with the "Q" command to ensure that the
controller is at a known (reset) state when the program starts.

R Set Output Line Low

Sets an Output line LOW
The R command is similar to the P command but the next digit received after the R
identifies the output line to be set low by the controller. The 8 output lines are numbered
from 1 to 8. The output lines are set high during startup and after a reset. The MARK |li
controller output lines provide TTL level signals.
The format of the command is

[<motor ID>]<R><output line numbers> <return>

Examples of command use as issued by a BASIC program:

PRINT "R5" <return>
PRINT "CR2" <return> (Clears the move buffer first)

Page 3-11

XR Owner's Manual
X Stop motor command

Stops motors A thru H

It is often necessary to turn off a motor that is stalled. One way to do this is to determine
how far the motor is from completing it's move and then sending a move command that
will reverse the motor far enough to cancel the remaining portion of the move. A faster
way is to send the stop command.

The format of the stop command is
<motor ID><X> <return>
Examples of the command as issued from a BASIC program:

PRINT "BX" <return>
PRINT "DX" <return>
PRINT "HX" <return>
PRINT "AX" <return>

where the first character identifies the motor to be stopped and the "X" is the stop
command. The "X" command is followed by a carriage return and does not re-issue the
preceding move command because the motor ID letter clears the buffer. When the "X"
command is received, the remaining portion of the motor move, (the portion that was still
to be moved,) is lost and cannot be recovered. If the information is important, the user
should first determine how far the motor still has to go with the "?" command, store the
information in the host computer and then send the "X" command to stop the motor.

Page 3-12

XR Owner's Manual

USING THE COMMANDS

Detailed instruction and examples on how to use the commands are given in the
sections on using the Apple lle and the IBM-PC as the host computer. The examples
given send the command in the context of a subroutine, although ordinary Print, Peek
and Poke commands and machine code (assembly language) routines can also be used
to send and receive information. The commands used will depend on the language that
you are using. See the manual for your particular computer and the language that you
are using to see how these commands can be used.

The fastest way to send commands and receive information is with the use of assembly
language (machine code) programming. Sophisticated users interested in developing
complicated command structures for the Rhino XR system will use machine code,
however, the scope of this manual can not cover machine code programming.

Two fairly complicated sample programs are provided on disk with the XR system to
show beginning users how to program complicated programs in machine code and/or in
BASIC. Interested experimenters will do well to study these programs at length. One of
the programs (the teach pendant emulator) actually emulates the teach pendant on the
keyboard of the computer. The other (XYZ) is an XYZ program that controls the robot in
XYZ coordinates. Of course your entire program does not have to be in machine code.
You can take useful machine code routines out of the sample programs and incorporate
them into your BASIC programs.

RoboTalk™

Those users wishing to use a higher level language to control the XR system can
use RoboTalk™ to do all their programming. RoboTalk is provided with each system.
See your RoboTalk Manual.

Rhino-VAL
Those users wishing to use an industrial robotic language to control the XR system
can use Rhino's emulation of VAL™, the Unimation language, to do their programming.

Rhino-VAL is provided on disk and versions are available for the Apple lle and the
IBM-PC.

Page 3-13

Ce

.
.

XR Owner's Manual

CHAPTER FOUR

RUNNING THE XR WITH ANY HOST COMPUTER

If you have one of the computers listed below, we suggest that you skip directly to one of
the two following chapters that covers your computer.

COMPUTER | CHAPTER
I

Apple lie | Five
|

IBM-PC | Six

Each chapter provides step-by-step instructions on how to connect the controller to the
computer, a tutorial on the fundamental controller commands, and important
programming techniques specific to the XR. Each section is specific for the computer
covered.

If you own either of the computers listed above, you also received a software package
designed for your machine. If your immediate concern is running the XR, and not
programming, we recommend that you refer to the manual that came with the software.
Then, if you want to learn more about programming, return to the section that covers your
computer.

If you don't own one of the computers covered individually, go to the following pages for
the general information you need to interface your computer to the RHINO system. We
suggest that you read these pages and then skip to the section which covers a computer
that most closely resembles your own. For example, if you have an IBM compatible
machine, skip to the section on the IBM PC. Then adapt the sample programs to your
own computer.

GENERAL INTERFACING INSTRUCTIONS
Electrical connections:
No matter what computer you use as a host, it must have an RS-232c¢ serial interface,

capable of both sending and receiving data. The Mark Il Controller uses only three of
the 25 communication lines on the DB 25 connector:

Page 4-1

XR Owner's Manual

Line 2 carries data transmitted by the controller, received by the host
computer

Line 3 carries data received by the controlier, sent by the host computer

Line 7 is the common data ground line.
Therefore, your computer's RS-232¢ connections must be configured as follows:

Line 2 should be configured to receive data
Line 3 should be configured to transmit data
Line 7 should be configured to be the data ground

Handshaking:

The Mark lIl Controller does not use a handshake protocol. Therefore, the DB25
connectors must be modified. Jumper wires must be soldered to connector pins so that,
essentially, your computer shakes hands with itself.

Usually, jumpers should be soldered between pins 4 and 5 and between pins 6, 8 and

20. To know exactly what to do, you will have to read the manual for the RS-232¢ port for
your particular computer. You may be able to use the data cable supplied with the Rhino
robot system.

Consult your computer manual to determine what signals it requires, you may have to
make further modifications. Remember to treat the controller as a serial (ASCII) I/O

device.

DATA FORMAT

Configure your computer's RS232¢ port for the following data format:

9600 Baud
7 data bits
even parity
2 stop hits

Although it depends on your computer, you'll probably have to set up the data format

with software instructions at the start of each of your programs. You can find illustrations
of how to do this in the sections covering the individual computers.

Page 4-2

XR Owner's Manual

OPEN THE PORT

You also have to configure your computer so that commands are routed to the proper
port. Using your computer manual, set up as if your computer were transmitting to an
ASClI serial I/O device. This may require some switch setting, but more likely it will
require some software instruction. Again, consult your computer manual.

You may be able to use the information provided in this manual for the IBM-PC and the
Apple lle as a guide to help you.

Page 4-3

)
-
.

XR Owner's Manual

CHAPTER FIVE

RUNNING THE XR WITH AN APPLE lle

INTERFACING

To interface your Apple lle to the MARK Ili controller you will need the Apple Super
Serial card. This card allows the computer to use the RS232c serial communication
standard which the MARK Il requires.

install the Super Serial card in the number two slot of your Apple lie (some higher

level languages from Rhino require placement of the serial card to be in slot 1, referto
the appropriate software manual). To install the card, turn off the power and remove the
top of your Apple according to the manual. Locate the peripheral board sockets at the
back of the circuit board. The number 2 slot is the second socket from your left. Make
sure you plug the board in with the component side facing toward your right as you look
at the computer keyboard.

4 ™

The Apple lie

Rhino provides an RS 232C cable with DB25 connectors for a proper connection
between your Apple lle and the Mark lli Controller. Install it as follows:

1. Be sure that the main power and motor power switches on the
controller are off, and that the Apple power is off;

5 On the Mark lil controller, plug one end of the cable into the port on the

front of the controller labeled "Computer”, plug the other end of the
cable into the serial interface card in the computer.

Page 5-1

XR Owner's Manual

Setting Up the Communications

1. Insert the system master disk (that came with your computer) into your
disk drive.

2. Turn on your Apple.

3. Turn on the controller main power switch.

4. Turn on the controlier motor power switch.

5. Press the reset button the Mark Ill controller.
Whenever you program your Apple to run the XR, you must begin by setting up
communications between the computer and the robot controller. The first lines of any

BASIC program must contain these initialization commands.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0: POKE CL,190 : POKE CO,101

In the above lines of codes, the variables are used as described below:

DA=49320 sets the memory address for the data (for slot 2)
(use 49304 if you want to use slot 1)

ST=DA+1 sets the memory address for status register

CO=ST+1 addresses the command register

CL=CO+1 addresses the control register

S=16 and R=24 are the masks for bits 3 and 4

POKE ST,0 resets (clears) the UART

POKE CL,120 sets the BAUD rate at 9600

POKE CO,101 sets 7 data bits, even parity, 2 stop bits

These explanations are given for reference purposes. All you have to remember about
the communication set up lines is that you must start all your BASIC programs with them.

The Super Serial card must also be configured for the correct BAUD rate, parity, etc. by

the setting of its DIP switches. Refer to the following diagram to setup your Super Serial
card.

Page 5-2

XR Owner's Manual

SWU1 sU2
==

/ [¥] |Terminal

M Wi 7

0001011 0000000

. Super serial card switch settings for
9600 BAUD, 7 data bits, 2 stop bits and even parity

To Mark 111
t:: Controller L

Super Serial

card in slot #2
0001011 [0000000 D

80 Column yl
card in special i e o |

slot e o o Disk controlier

5 [[in slot #¥6
[[[[[
| o o

L CICell || i

Typical set up for the Apple lle

Moving The Motors With The START Command

Once you have initialized your computer you can use it to communicate with the robot
controlier. Type in the lines listed below.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0 : POKE CL,190 : POKE CO,101

30 A$="F+50"+CHR$(13): GOSUB 100

40 END

Page 5-3

XR Owner's Manual

[Teach
Pendant

when using a computer |;
to control the robot as
with the Apple lle.

aQ

ooog

sjajs]
. oooo
Switch must be down |BEEE
oooo

oo

%

Mark 111
Controller

[RHINO ¢

Typical set up of the robot and controller.

In the above lines:

"E+50" forms the START command, one of the fundamental commands you can send to
the XR controller with your host computer. The START command tells the
controller to start a designated motor and move it a specified number of steps in

a specific direction.
The "F" designates that the F motor is to be moved
The "+" indicates the direction of motion

The "50" specifies the number of encoder positions the motor will turn -- the distance to
be moved.

To send the START command, or any of the controller commands, it is best to use a
subroutine. That's why in line 30 above we set the variable A$ equal to the command.
A$ is the variable we will use to carry the command string to the subroutine.

The START command must always be followed by a carriage return, hence the

command is followed by CHR$(13). CHR$(13) is the same as HEX (0D). GOSUB 100
simply calls the subroutine that sends the command to the controller.

Page 5-4

XR Owner's Manual

Here is a standard subroutine that you can use, to send any of the fundamental
commands to the controller. Type it in as it is written below.

100 FOR J=1 TO LEN(A$)

110 WAIT ST, S

120 POKE DA, ASC (MID$(A$,J,1))
130 NEXT

140 RETURN

Each line of the above subroutine functions as described below:

100 picks up the characters in the command one at a time

110 waits until the last character has been sent before sending the next
character

120 calculates the ASCII value of the character and transmits it to the
controller

130 loops back for the next character (until the last character)

140 goes back, after the last character is sent, t0 the next program line in
the main program

Now, watch your XR arm as you run this short program (type RUN, then <return>). The
XR will rotate at the waist and then stop. Now go back to line 30 and change it so it looks
like this:

30 A$="F-50"+CHR$(13) : GOSUB 100
Run the program again and observe that the XR arm now turns in the opposite direction.
The "-" sign made the difference. We used a "+" sign in our first example. (Even ifthe +
sign is omitted, the + direction will be assumed.)
You now have all you need to move each motor individually. Go back and change line
30 so that A$="E+50" (don't forget the rest of the line). Remember, the letter designates
the motor to be moved, so you need only change the letter to specify a new motor. Run
this and observe the E motor movement.

Do the same for the D, C and B motors. Don't use the A motor just yet because it has a
very limited travel capability. Familiarize yourself with each axis movement as you go.

For now, limit the number of encoder steps in a move to 50.

More About The START Command--The Error Registers

Page 5-5

XR Owner's Manual

Now that you have used the basic START command, you are ready to learn more about
it.

Consider our first START command "F+50" as an example. When we sent that
command (using the output subroutine), the motor "F" moved. But much more than that

happened.

The MARK Il controller maintains an 8 bit error register for each of the 8 motors. When
the error register for a specific motor is zero, the controller removes all power to the
motor and the motor remains stationary. When the error register is non-zero, the
controller connects either a positive voltage or a negative voltage to the motor. The
polarity of the power is a function of what is in the error register. If the error value is
positive, the motor moves in one direction and if it is negative, the motor moves in the
other direction. Before we sent a command, the error registers for all the motors were
zero.

A START command adds the motor movement value to the error register for the motor
specified. In our example, that motor was the F motor. The value added was 50.

As soon as a value is added to the error register for a motor, the controller starts that
motor in the direction that will take the error register to zero. As the motor moves, the
encoders are read and the count in the error register is decremented. When the error
register reaches zero, the power is turned off. So, when our START command added 50
to the F motor register, the controller moved that motor 50 encoder steps in the right
direction to return the error register to zero.

The command "F-50" adds a value of -50 to the F motor error register. When the
controller receives a "-" sign, it moves the motor in the opposite direction from the +
direction to reach the zero error position.

Remember:

1. A START command adds a value to the designated motor's error
register.

2. The value added to the error register represents the number of steps the
designated motor encoder must move to return the register to zero.

3. The controller software is designed so that motors seek the zero error
condition.

Page 5-6

XR Owner's Manual

4. The sign in the START command designates direction of motion.

With this in mind, we move on to the QUESTION command.

The QUESTION Command

After you have run each of the motors, clear your Apple's memory. Now type in the
program listed below.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0 : POKE CL,190 : POKE CO,101
30 A$="F+50"+CHR$(13) : GOSUB 140

40 A$="F?": GOSUB 100

50 IF W>0 THEN 40

60 A$="F-50"+CHR$(13): GOSUB 140

70 A$="F?": GOSUB 100

80 IF W>0 THEN 70

90 END

100 GOSUB 140

110 WAIT ST, R

120 W=PEEK(DA)-32

130 RETURN

140 FOR J=1 TO LEN(A$)

150 WAITST, S

160 POKE DA,ASC(MID$(A$,J,1))

170 NEXT

180 RETURN

Run the program and you'll see that it simply turns the waist in one direction and then in
the other. You might be wondering why we did not follow line

30 A$="F+50"+CHR$(13) : GOSUB 140
with
40 A$="F-50"+CHR$(13) : GOSUB 140.

Instead, on line 40 we followed the "F+50" START command with "F?". Why did we do
this?

Remember that a START command adds a value to a motor's error register. If we sent

Page 5-7

XR Owner's Manual

an "F-50" immediately after an "F+50", the -50 count in the second command would
combine with the remains of the +50 command and send the F motor in the opposite
direction before it completed the full "+50" steps in the first START command.

We had to be sure that all 50 original steps were executed before we sent the controller
next 50 steps, which are, in the opposite direction. (If the steps are in the same direction,
they can be added to the ongoing command as long as the error registers do not
overflow. More about this later.)

How The QUESTION Command Works

The QUESTION command instructs the MARK Ill controller to return the current value of
the error register for a specific motor. Specifically, it asks how much further the motor
must travel before the error register is zero.

In our example, the START command on line 30 adds 50 steps to the F motor error
register. Line 40 uses the QUESTION command to request the count in the error register
for the F motor. The second half of line 40 calls the subroutine at line 100. The
subroutine at line 100 uses the program you have already seen to send the START
command (it begins on line 140). But it also incorporates a subroutine to receive the
answer to the QUESTION command. You can use this subroutine, as written, whenever
you use the QUESTION or similar inquiry commands in your own programs.

In our program, we want to be sure that all 50 steps sent in the original START command
have been executed before we send the second START command (in the opposite
direction). We use the QUESTION to determine how many steps are currently left in the
move. With line 50 we loop through the QUESTION command until the answer is zero.
We know that when the answer is zero, all 50 steps originally asked for have been
executed. Only then does the program move on to send the second START command.

More About The QUESTION Command. Making A Longer Move

So far, our sample programs have limited the START commands to 50 steps. The
reason has to do with the capacity and use of the error registers. Two factors create
problems.

1. The largest signed decimal number we can store in an 8 bit error register is
127 (1 bit for the sign of the number, and seven bits to represent up to
127). Numbers larger than 127 will overflow the register. When this
happens, the register overflows into the sign bit. This reverses the sign in

Page 5-8

XR Owner's Manual

the error register and thus reverses the motor. In other words, the motor
can start to move in the opposite direction to that specified in the START
command if the register overflows.

2. When the controller receives a QUESTION command, it automatically adds
32 (hexadecimal 20) to the answer before it transmits it to the host
computer. It does so because some computers treat values below decimal
32 (HEX 20) as commands instead of data. Note that in the subroutine, at
line 120, 32 is subtracted from the answer received in response to the
QUESTION command. This compensates for the 32 added by the
controller. Since the communication line is set for 7 data bits, the largest
value that can be returned is 127 which means that the largest value the
controller can send is 127-32 or 95.

A motor's error register can be zero, but it can never be lower (because we use the sign
bit for direction of travel of the motor). In other words, you can find how far a motor is
from the zero position but you cannot find out what direction the zero position is in. The
error count is always positive. By adding 32 to every value it transmits to the host
computer, the controller ensures that the computer can never receive an answer less
than decimal 32 (HEX 20).

EXAMPLE - Suppose you send a START command of 120 steps. The motor starts to
seek zero immediately. If the controller receives a QUESTION when the motor has
traveled 20 steps, the answer sent back (the number of steps until zero) will be 100. But
the controller will add 32 to the 100 before it sends the answer back to the host. 132 is
more than you can represent with 7 bits so the communication line will truncate the 132
to 7 bits and an error will occur.

All this may seem puzzling to you at first, however you will begin to understand the
system as you work with it. If you are confused, just keep this rule in mind:

DON'T LET THE ERROR REGISTER EXCEED 95
"But," you may be asking, "how do I get the XR to execute a move longer than 95 steps?"
The answer is to first add to a motor's error register with a START command. Monitor the
status of the error register with the QUESTION command. Then, add to the register with
another START before the register reaches zero, but do not add so much as to exceed
the 95 limit.

The following program shows a simple way to achieve a move of 500 steps.

Page 5-9

XR Owner's Manual

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0 : POKE CL,190 : POKE C0,101
30 FOR I=1TO 10

40 A$="F+50"+CHR$(13) : GOSUB 140
50 A$="F7" : GOSUB 100

60 IF W>45 THEN 50

80 NEXT

90 END

100 GOSUB 140

110 WAIT ST,R

120 W=PEEK(DA)-32

130 RETURN

140 FOR J=1 TO LEN(A$)

150 WAIT ST, S

160 POKE DA, ASC(MID$(A$,J,1))

170 NEXT

180 RETURN

This program uses two key techniques to accomplish the 500 step move.

1. The FOR/NEXT loop that begins on line 30 divides and conquers by
adding 500 steps to the F motor error register, 50 steps at atime. It
loops the computer through line 80 ten times, then exits the loop.

2. The IF/ THEN statement on line 60 loops the computer through the
QUESTION command on line 50 until the answer is 45 or less. When
the answer is 45 or less it is safe to continue through the FOR loop and
add the next 50 steps without exceeding the 95 limit.

Remember that in our simple program to rotate the F motor back and forth, the program
looped until all of the first 50 steps were executed. This was necessary because the
second move was in the opposite direction to the first, and would have reversed the
motor before it completed the original 50 steps.

But for the long move above, we do not have to wait for the error register to reach zero
before adding to it. We want to avoid letting the error register reach zero, because if it
does, the motor will stop. And we want to keep adding to the register without exceeding
95. In fact we want to keep the error register as close to 95 as possible as long as we
have encoder positions that need to be moved.

You might want to think of an error register as if it was a gas tank. You never want it to be
empty, but you can't allow it to overflow either. Strategically this allows you to go the

Page 5-10

XR Owner's Manual

longest distance between gas stations if you don't know how far apart the stations are.
More about this later.

The program above showed one way to do this. It added 50 to the register, and as soon
as there was room for another 50, it added another 50.

The program worked as an illustration, but it has drawbacks. The most important
drawback is that it waits for the register to come all the way down to 45 before it adds
anything to it. This is not a problem here, but as you program more and more complex
moves, and connect accessory motors to the controller, the computer will get busier and
busier, and timing will become more critical. You will have less time to check and fill the
registers.

A better way to do this is to always fill the register as full as possible. Instead of deciding
beforehand when and how many steps to add, let the computer calculate how many
steps it can add without exceeding 95, and automatically add that many steps. The
program below does just that.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0 : POKE CL,190 : POKE CO,101
30 N=500

40 H=95

50 IF N<=H THEN 100

60 A$="F+" + STR$(H) + CHR$(13)

70 GOSUB 160 : N=N-H

80 A$="F?": GOSUB 120 : H=95-W

90 GOTO 50

100 A$="F+" + STR$(N) + CHR$(13)

110 GOSUB 160 : END

120 GOSUB 160

130 WAIT ST,R

140 W=PEEK(DA)-32

150 RETURN

160 FOR J=1 TO LEN(A$)

170 WAITST,S

180 POKE DA, ASC (MID$(A$,J,1))

190 NEXT

200 RETURN

In line 30 of the above program, N represents the total number of steps we want the
motor to move. We used 500, but you could change the value of N to any number of

Page 5-11

XR Owner's Manual
encoder steps.

We use H as the variable for the number of steps we add to the error register. In line 40,
we assign H an initial value of 95; the maximum number we can safely add to the error
register. If your total move was less than 95, this would be taken into account in line 50.

In line 60, we send a START command that is slightly different from the ones we have
used up to now. Instead of specifying the number of steps, we use the variable H. Line
60 will add H number of steps to the F motor error register. Since we have assigned H
an initial value of 95, the computer will add 95 the first time it executes line 60.

Line 70 calls the subroutine to send the START command on line 60.

Line 80 sends a QUESTION command and calls the subroutine to send the command
and receive the answer (W).

Line 80 also assigns H a new value, (95-W). Since W represents the number of steps
the F motor must travel before the error register is zero, 95-W is the number of steps we
can add to the error register without exceeding 95.

Line 90 loops back to line 50. Line 50 checks whether H is greater than N. If H is not
greater than N, the computer goes to line 60.

Line 60 sends the START command with H steps.

The program will repeat this loop until H is greater than or equal to N. Remember, line
70 subtracts H from N each time H has been added to the error register. So N, our
original number of steps, gets smaller each time through the loop.

When H is greater than N, the computer goes to line 100, another START command.
This START command, however, adds N steps to the error register instead of H steps. At
this point, sending N steps completes the original N (500) steps.

As you can see, this is one way of keeping the error register as full as possible. When
you write programs to run several motors, this will be critical. Since the program will
have to check more than one error register (by means of the QUESTION command), it is
important to fill the error register completely each time the QUESTION command is used.
Otherwise, the error register may get to zero (the motor stops) before the computer gets
back to check and refill the register.

The STOP And INQUIRY Commands

Page 5-12

XR Owner's Manual

In this section we introduce you to the STOP and INQUIRY commands. We'll talk about
each separately and then provide a sample program that uses both.

The STOP Command

When you use a START command, a motor will travel the assigned number of steps and
stop. But as you develop programs of your own, you'l need to stop motors under
specified conditions.

For example, many applications present the possibility of running the robot arm into an
object. If the robot crashes into an obstacle, you need a way of recovering from the
accident without losing your program and positional information. A servo motor will try to
keep moving as long as it has power (ie., as long as its error register is non-zero). The
STOP command enables us to bring a specific error register to zero on command.
An example of the STOP command looks like this:

A$="FX"

As in the other commands, A$ carries the command through the output subroutine (the
same subroutine as was used to send the START command).

F designates that the "F" motor error register is to be brought to zero.

X is the actual stop command.
With the STOP command, your programs can incorporate protections against stalls. You
can use the QUESTION command to check the status of an error register. The program
would send the controller a STOP command in the event that the (a non-zero) error
register status condition did not change during a number of successive checks.
Another use of the STOP command has to do with the microswitches mounted on the XR.

The next section, which covers the INQUIRY command, will illustrate the use of the STOP
command with the INQUIRY command.

The INQUIRY Commands. Reading The Microswitches

Page 5-13

XR Owner's Manual

The XR-3 is equipped with six microswitches, one for each of the six motors on the arm.
Each axis closes it's switch at a defined point. Therefore, we have an identifiable and
repeatable orientation point for each axis on the XR; the point at which the microswitch is
closed.

The INQUIRY commands (I and J) gives us the means to determine whether any of the
switches on the robot arm are closed at a given time. The Mark Ill controller can read
switches on all its ports. So, as your XR is connected now, the controller reads the
switches as follows:

Can controller Command
Motor Port Joint read switch? Used
A A Fingers Yes J
B B Wrist Yes J
C C Wrist flex Yes I
D D Elbow Yes |
E E Shoulder Yes |
F F Waist Yes |
G G Accessory Yes [
H H Accessory Yes I

In the standard configuration, with motors A-F connected to ports A-F on the controller,
the I INQUIRY command reads motors C-F on the XR-3 and G and H on the
accessories.

In order to read the A and B port switches it is necessary to use the J INQUIRY
command.

Using the INQUIRY Commands

The INQUIRY commands work much like the QUESTION command. Each requires the
same subroutines to send the command and to receive the answer. The controller adds
32 to the answer before it transmits it to your computer to avoid ASCll command codes,
and the receiving subroutine subtracts 32 to yield an accurate answer.

But instead of designating individual motors when you send the INQUIRY, you send the
command and interpret the answer according to the port you wish to read. The
command itself looks like this:

AS$="I": GOSUB XXX

Page 5-14

XR Owner's Manual

or A$="J" : GOSUB XXX

where XXX is the number of the same subroutine that you've used for the QUESTION
command.

Interpreting The Answers

The key to using the INQUIRY command is interpreting the answer sent back from the
controller. Remember that the controller communicates by using one byte only, and that

the single byte answer uses one bit in the byte for each switch.

The bits are assigned to the ports as follows in the "I" command:

Port Bit
C 0
D 1
E 2
F 3
G 4
H 5
- 6 not used
- 7 notused MSB.

A microswitch can either be open or be closed. When a switch is open, the
corresponding bit contains a one. When all switches are open, all six bits contain a one,
which has a decimal value of 63. (In fact, the controller sends a 95. Remember that the
controller adds 32 to anything it sends to your computer to avoid command codes. Our
subroutine to receive the answer automatically subtracts 32 to yield the real value.)

If a switch is closed, the corresponding bit contains a 0, and the answer to an I-INQUIRY

will be 63 minus a value unique to the open switch and bit. The table below illustrates
what happens when one switch is closed and all others are open.

Page 5-15

XR Owner's Manual

IF THE SWITCH AT THE ANSWER RETURNED IN
PORT X IS CLOSED, RESPONSE TO AN INQUIRY
AND ALL OTHERS ARE OPEN BECOMES. (ignoring the.32 count offset)
If X=C 62 (63-1)
If X=D : 61 (63-2)
If X=E 59 (63-4)
If X=F 55 (63-8)
If X=G 47 (63-16)
If X=H 31 (63-32)

As you can see, when a switch is closed, a value unique to that switch is subtracted from
63. If we could be sure that only one switch is closed at any one time, things would be
simple. We could just send the I-INQUIRY command and check the answer to determine
if the switch we were checking for was closed.

The problem is that at any one time, more that one switch may be closed. The answer
received will be 63 minus the sum of the values for all closed switches. For example, if
switches C, D, and E were closed when we sent the I-INQUIRY, the answer returned
would be 56 ((63-(1+2+4)).

To check for any one switch, we must mask the answer for any other switches that might
be closed.

The following subroutine does just that. We would call this subroutine after sending an
INQUIRY and receiving the answer. The variable W represents that answer, and we are
checking to see whether the D microswitch is closed.

100C=0:D=0:E=0:F=0:G=0:H=0

110 IF W>31 THEN H=1 : W=W-32

120 IF W>15 THEN G=1 : W=W-16

130 IF W>7 THEN F=1 : W=W-8

140 IF W>3 THEN E=1 : W=W-4

150 IF W>1 THEN D=1 : W=W-2

160 IF W>0 THEN C=1

170 IF D=1 THEN XXX (go to desired portion of program).

Let's run through the subroutine with an actual value to see how it works. Assume that
the C and D switches are closed, but that we only care about the D motor. Remember
that if all switches are open, the answer returned in response to an I-INQUIRY command

is 63.

Page 5-16

XR Owner's Manual

Remember also that if a switch is closed, the answer returned will be 63 minus a unique
value for that switch:

SWITCH CONTROLLER
CLOSED SUBTRACTS

C 1

D 2

E 4

F 8

G 16

H 32

Given this, we know that if switches C and D are closed, the answer returned in
response to the INQUIRY command will be 60.

Let's see how our subroutine determines whether the D switch is closed.

Line 100 assigns a variable to each switch. It simply uses the letters assigned to each
port. It assigns the value zero to each variable to initialize it to a known quantity. As
discussed above, zero, corresponds to an open switch.

Line 110 checks to see whether the H switch is closed. We know that when W>31, the H
switch is open. We know this because even if the H switch were closed and all others
open, W would be at least 31. Therefore, if W>31, the H switch must be open. Since W
is sixty the H switch is open, and we can now set H=1 to indicate that it is open.

If H is open, we know that 32 is part of W. Before checking the G switch, we must mask
the 32. That's why before moving to line 120, we set W=W-32. So now W=28.

Line 120 checks the G switch. We know that if W>15, the G switch must be open
because even if all other switches were open (remember we've masked the H switch),W

would be only 15. Now G=1 and we can mask for 16 because we know it is open. Now
W=28-16=12.

Understand how the routine checks for each switch and masks for its value before
reading further. Run through line 130 with 12, then take the new W and run through 140.

After line 130 and line 140, W should equal 0. The next line, 150, checks for the D
switch. Let's see what happens when a switch is closed.

150 IF W>1 THEN D=1:W=W-2

Page 5-17

XR Owner's Manual

Since W now is 0, and 1 is not greater than 1, D remains zero. W remains 0, as there is
no value to mask.

Line 160 checks for the only remaining switch, the C switch.
160 IF W>0 THEN C=1

Since W is still zero, and zero is not greater than zero, C remains zero. Since all
switches have been checked, the subroutine ends here.

With the subroutine complete the variables are now as follows:

(C switch is closed)
(D switch is closed)
(E switch is open)
(F switch is open)
(G switch is open)
(H switch is open)

IOTMOO
w0
=00

nn
-t

Since we are checking for the D switch, we have to use an IF... THEN ... statement to
make the results of the subroutine useful. For example:

IF D=0 THEN XXX

where XXX represents the line we want to execute if the D switch is closed.

The STOP and INQUIRY Commands. A Sample Program

The program below supposes that an accessory (the carousel) is connected to the G port
on the controller. It runs the carousel and uses the I-INQUIRY command to detect when
the cam on the carousel closes the microswitch. When the microswitch is closed, the
carousel (G motor) is sent a STOP command, bringing the G error register to zero to stop
the motor. -

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0: POKE CL,190 : POKE CO,101

30 A$="G+50" + CHR$(13)

40 GOSUB 170

50 A$="I": GOSUB 130

60 GOSUB 220

70 IF G=0 THEN 110

Page 5-18

XR Owner's Manual

80 A$="G?": GOSUB 130

90 IF W>45 THEN 50

100 GOTO 30

110 A$="GX" : GOSUB 170

120 END

130 GOSUB 170

140 WAIT ST,R

150 W=PEEK(DA)-32

160 RETURN

170 FOR J=1 TO LEN(A$)

180 WAIT ST,S

190 POKE DA, ASC(MID$(A$,d,1))
200 NEXT

210 RETURN

220 C=0:D=0:E=0:F=0:G=0:H=0
230 IF W>31 THEN H=1 : W=W-32
240 IF W>15 THEN G=1 : W=W-16
250 IF W>7 THEN F=1 : W=W-8
260 IF W>3 THEN E=1 : W=W-4
270 IF W>1 THEN D=1 : W=W-2
280 IF W>0 THEN C=1

290 RETURN

Line 30 lists a START command, adding 50 steps to the G motor error register to get it
started.

Line 40 calls the subroutine to send the START command.

Line 50 sends the INQUIRY command to immediately begin checking the switches. (Line
50 also calls the subroutine to transmit the command and receive the answer.)

Line 60 calls the subroutine to interpret the answer to the INQUIRY.

Line 70 checks whether the G switch is closed (G=0). Ifit is closed, it sends the
computer to line 110, a STOP command.

Line 80 checks the status of the G motor error register and calls the subroutine to send
the command and receive the answer.

Line 90 sends the computer back to the INQUIRY command if there is not enough room
in the G motor error register for another 50 steps.

Page 5-19

XR Owner's Manual

Line 100 loops back to line 30 to add 50 more steps to the error register and keep the G
motor moving.

Line 110 is the STOP command executed when the G switch is found. It brings the G
motor error register to zero, stopping the motor.

The rest of the program lists the subroutines that we have already discussed.

Note that we use 50 step increments in our START command. But as discussed earlier,
in more complicated programs it is better to start with 95 steps and fill the error register
as full as possible each time, just as illustrated earlier.

A More Efficient Subroutine To Interpret Answers To An Inquiry Command.

The routine we have used to interpret answers to an INQUIRY worked as an illustration.
But it is long and awkward. Now that you know how to interpret an answer, here is a
shortcut.

The following subroutine would replace lines 220 through 290 in the sample program
above.

200 FOR T=5 TO 0 STEP -1 : A(T)=0
210 IF W>((2 A T)-1) THEN A(T)=1 : W=W-2 A T
220 NEXTT

This subroutine does essentially what our old one did, but it does it in terms of an array.
It assumes all switches are closed (=0) until proven otherwise.

As with the other subroutine, you must check the specific switch at completion of the the
subroutine. But for this subroutine, you must address the switch in terms of the array, not
by letter.

A(5) corresponds to the H switch
A(4) corresponds to the G switch
A(3) corresponds to the F switch
A(2) corresponds to the E switch
A(1) corresponds to the D switch
A(0) corresponds to the C switch

In the last sample program, to find the G switch and stop, line 70 would change to:

Page 5-20

XR Owner's Manual

IF A(4)=0 THEN 110

Hard Home

Now you have seen how the INQUIRY command works to read the microswitches. You
may want to use the INQUIRY for any number of reasons, but an important reason will be
to find a repeatable starting robot position.

You may want to write a program to move the robot from point A to point B. The program
won't work more than once unless the robot starts from the same point each time you run
it. The way to establish such a starting point is to send each axis to the position where it

actuates the microswitch and stop it there.

We call this switch defined robot position the hardware home position, or hard home
for short. We've written a hard home program for your Apple. This program finds the
microswitches for motors D, E, and F and stops each motor in this position. In fact, it
finds the center of each microswitch--that is, it stops at the midpoint between the point at
which the switch closes and the point at which it reopens. This precision is vital if you
wish to repeat programs accurately.

You'll find the program in Chapter 10.

In practice, you should call the hard home routine once before each of your
programming sessions begins.

Our hard home routine sets only three switches. You may wish to modify it to set the
other three. If you do, remember that ports A and B of the controller are read with the
J-INQUIRY command. Address them accordingly in your commands.

Note: The fingers and wrist flex axes have readily identifiable visual references. The
fingers can be opened as far as they will go. The hand should be perpendicular to the
work surface, fingers down and parallel with the body.

SUMMARY OF COMMANDS AND SUBROUTINES

OPEN COMMUNICATIONS

Your programs should always begin with two lines that open communications between
your Apple and the controller.

Page 5-21

XR Owner's Manual

Use these two lines for the SuperSerial card:

10 DA=49320: ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24

20 POKE ST,0: POKE CL, 190 : POKE CO, 101
The START command starts a motor and moves it a specific distance and
direction by adding the given value to that motor's error register.
Sample Apple command:

A$="D+50"+CHR$(13)

"D" addresses the motor

"+50" assigns direction (+) and distance (50 encoder holes)

CHR$(13) is the carriage return required after a START command
A$ is the variable used to carry the command through the necessary output subroutine.
The QUESTION command checks the error register for a motor to find out
how much further it must travel before its error register is zero.
Sample Apple command:

A$="D?"

"D" designates the error register to be checked
"?" is the actual QUESTION command

AS$ is the variable used to carry the command through the input/output subroutine.
The I-INQUIRY command asks whether the microswitches for motors C
through H are open or closed. J-INQUIRY is similar.
Sample Apple command:

AS="1"

"I" is the actual INQUIRY command

AS$ is the variable used to carry the command through the necessary

Page 5-22

XR Owner's Manual

input/output subroutine.

The STOP command stops a motor by bringing its error register to zero

Sample Apple command:
A$="DXH

"D" designates the motor
"X" is the actual STOP command

A$ is the variable used to carry the command through the necessary output subroutine

SUBROUTINES

Output only - call immediately after START and STOP commands to transmit them to
the controller. (A$ contains the command string).

500 FOR J=1 TO LEN(A$)

510 WAITST, S

520 POKE DA, ASC(MID$(A$,J,1))
530 NEXT

540 RETURN

Output/input - call after QUESTION or INQUIRY commands to transmit the commands
to the controller and receive the answer

400 GOSUB (output subroutine above)
410 WAIT ST,R

420 W=PEEK(DA)-32

430 RETURN

Subroutine to interpret answers to INQUIRY commands - call after INQUIRY
has been sent and output/input subroutine has been called

100 FOR T=5 TO 0 STEP -1: A(T)=0

110 IF W>(2 A T)-1 THEN A(T)=1:W=W-2 A T
120 NEXTT

Page 5-23

XR Owner's Manual
130 RETURN

At completion of the subroutine, the computer returns to the program. To check any one
switch, you must address the switch in terms of an array, as follows:

=H switch
=G switch
=F switch
=FE switch
=D switch

A(5)=
(4)=
(3)
(2)
(1)
(0)=C switch

A
A
A
A
A

Therefore, if you wanted to check the D switch, the statement would look like this:
IF A(1)=0 THEN XXX
where XXX is the line you want executed if the switch is closed.

The subroutine sets all switches closed (=0) until otherwise proven. An open switch
equals one, a closed switch equals zero.

USING THE INPUT/OUTPUT COMMANDS

The MARK Il controller has eight TTL inputs, eight TTL outputs and two unencoded
motor power port called the AUX ports. Eight commands are available to completely
control these features. The use of these commands follow closely the format already
developed to control the motor movements; in fact they use the same subroutines.

The MARK Il inputs and outputs are TTL compatable and should be treated as low
current (less than 15ma at 5 VDC) devices. Do not apply an external voltages to these
ports, use the 5 volt source provided on the I/O front panel. The inputs are internally
pulled up by 10k ohm resistors and therefore appear to be ON when left unconnected.
To control the inputs, a switch should be connected to the input port and the ground
terminal. When the switch is closed the input will be OFF; with the switch open the input
will be ON.

The outputs are active LOW which means that when the port is ON the output will be
LOW and when the port is OFF the output will be HIGH.

The following pages will give examples on how to implement each of these commands.

Page 5-24

XR Owner's Manual

J-Inquiry Command. Read Inputs 1 through 4

The J command, like the | command, returns a byte in which the first four bits represent
the state of inputs 1 through 4 as follows:

i Input

e
—

WM—*Ol
SWN =

The same type of routine that was used with the | command can be used to set an arry
variable to a 1 or a 0 dependent on the state of the input. Here we will use the variable |
to represent the inputs, with 1(0)=Input 1, I(1)=Input 2 etc.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16 : R=24
20 POKE ST,0 : POKE CL,190 : POKE CO,101
30 A$="G+50" + CHR$(13)

40 GOSUB 170

50 A$="J": GOSUB 130

60 GOSUB 220

70 IF I(1)=1 THEN 110

80 A$="G?": GOSUB 130

90 IF W>45 THEN 50

100 GOTO 30

110 A$="GX" : GOSUB 170

120 END

130 GOSUB 170

140 WAIT ST,R

150 W=PEEK(DA)-32

160. RETURN

170 FOR J=1 TO LEN(A$)

180 WAITST,S

190 POKE DA, ASC(MID$(AS$,J,1))

200 NEXT

210 RETURN

220 FOR T=3 TO 0 STEP -1 : I(T)=0

230 IFW>((2AT)-1) THENI(T)=1 : W=W-2 A T
240 NEXTT

Page 5-25

XR Owner's Manual

250 RETURN

This program will move the G axis motor, a belt conveyor for instance, until INPUT #2 is
turned ON (high TTL level). In an actual workcell, a sensor which goes HIGH when a
part is detected would be connected to the input port; when the part arrives at the sensor
position, the conveyor will stop.

Lines 220 through 250 implement the routine that determines which inputs are ON by
checking each of the first four bits in the byte returned by the controller in response to the
J command. Line 70 checks if the input is ON; if it is the STOP command is executed
and the G port is turned off.

K-Inquiry command. Read inputs 5 through 8.

The implementation of the K command is identical to the J command except that the
returned byte contains the state of inputs 5 through 8 in the low four bits. The routine that
determines the state of each input is identical to the example program above; instead of
using a J in line 50 use a K.

Commands L, M, N, O. Sets the state of the AUX ports.

The two AUX ports on the MARK Il controller provide + or - 20VDC motor power, the
polarity of which is determined by the setting of the reversing switches near the AUX
ports. The four commands (L, M, N, O) set the AUX ports on or off, they do not set the
polarity of the output. These commands are simple one byte commands that do not
invoke a response from the MARK IlI controller. The implementation of all four
commands is identical, therefore the following example will show how to turn on AUX#2
and then turn it off.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0 : POKE CL,190 : POKE CO,101
30 A$="N"

40 GOSUB 170

50 FOR J=1 TO 1000: NEXT

60 A$="0O"

70 GOSUB 170

80 END

90 FOR J=1TO LEN(A$)

100 WAITST,S

110 POKE DA, ASC(MID$(A$,J,1))

Page 5-26

XR Owner's Manual

120 NEXT
130 RETURN

Lines 30 and 40 issue the N command which will turn on AUX port #2.

Line 50 implements a time delay to allow the user to see the effect of the AUX
commands.

Lines 60 and 70 issue the O command which will turn off AUX port #2.

The MARK Il controller has two indicator lights connected to the AUX ports to indicate if
they are ON. Even of you have nothing connected to the AUX ports, this program can be
run and verified since it will cause the light on AUX #2 to come on then go off.

P and R Commands. Set Output Lines High (OFF) and Low (ON)

Eight TTL level outputs are available on the MARK Ill controller, each of which can be set
or reset upon command. The P command instructs the controller to turn OFF an output
(make the output go high); the R command instructs the controller to turn ON an output
(make the output go low). The format of both commands is the letter of the command
followed by the port number that is to be changed.

Suppose it is desired to initialize output #3 by turning it off and then to turn on output #3
when the robot comes to rest to indicate that the material handling operation has been
completed. The following program will initialize move the waist 240 counts and then turn
ON the output.

10 DA=49320 : ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24
20 POKE ST,0: POKE CL,190 : POKE CO,101
30 A$="P3": GOSUB 210

40 N=240

50 H=95

60 IF N<=H THEN 110

70 A$="F+" + STR$(H) + CHR$(13)

80 GOSUB 210 : N=N-H

90 A$="F?": GOSUB 170 : H=95-W

100 GOTO 60

110 A$="F+" + STR$(N) + CHR$(13)

120 GOSUB 210

130 A$="F?: GOSUB 170

140 IF W>0 THEN 130

Page 5-27

XR Owner's Manual

150 A$="R3": GOSUB 210
160 END

170 GOSUB 210

180 WAIT ST,R

190 W=PEEK(DA)-32

200 RETURN

210 FOR J=1 TO LEN(A$)
220 WAITST,S

230 POKE DA, ASC (MID$(A$,J,1))
240 NEXT

250 RETURN

This program is familiar to you by now since it implements a long move as discussed
previously. However, line 30 directs the controller to turn off output #3 before starting the
programmed motor move. Lines 40 through 120 implements the long move. Upon
completion of the move, line 130 outputs the command to turn on port 3.

Page 5-28

"

XR Owner's Manual

CHAPTER SIX

RUNNING THE XR WITH AN IBM-PC

interfacing with the IBM-PC

You need an IBM Asynchronous Serial Communications Card and an RS-232C cable
with an IBM Adapter Plug for proper connection between your IBM-PC and the Mark 11l
controller. RHINO provides the cable and the adapter plug with every Mark Il Controller.
The customer provides the serial card which can be installed in any of the expansion
slots of the IBM PC; configure the card for COM1. Install the data cable as follows:

1. Be sure that the main power and motor power switches on the controlier
are off, and that the IBM-PC power is off;

2. Plug the female connector of the IBM adapter plug into the RS-232C port
of your IBM-PC. Plug the data cable into the other end of the IBM

adapter.

3. Connect the data cable into the port on the front of the controller labeled
"Computer".

Setting Up Communications

The following steps need to be taken to set up communications between your IBM-PC
and the Mark 1l Controller

1. Insert your IBM system DOS master disk into the left drive and turn on the
PC.

2. Place the Mode Switch on the front panel of the MARK Ill controller to the
COMPUTER (down) position and turn on the main power on the
controller.

3. Turn on the motor power on the controller.
4. Pressthe RESET button on the Mark 11l controller.

5. Load BASICA after the DOS disk is booted.

Page 6-1

XR Owner's Manual

If you have to stop the arm because it is going 1o strike an obstacle, or for any
emergency, press the reset button on the Mark 1l Controller. With this in mind, let's go

on.

Whenever you program with your IBM-PC, you must start by setting up communications
between your computer and the controller. Start by typing in the following line.

10 OPEN "COM1:9600,E,7,2,CS,DS,CD" AS #1
This line opens the communications port number 1 as file number 1 and sets the BAUD

rate and data format. It also disables time out errors.

Move The Motors With The START Command

Now, to make your XR move. Type in:

20 PRINT #1,"F+50"
30 END

Watch your XR as you run the program. Your XR will move 50 encoder holes on it's
walist axis and stop.

You used one of the four fundamental commands you can send to the controller; the
START command.

The "F" designated the motor.

The "+50" designated the direction (+) and the distance (50 encoder
holes).

Now change the sign in line 20 so it looks like this:

20 PRINT #1,"F-50"
By placing a - sign before the 50, you send the motor in the opposite direction. We
included the + sign in the first example as an illustration, but absence of a sign is

interpreted as a +. Run the program again and notice that the XR now moves in the
opposite direction before stopping.

Page 6-2

XR Owner's Manual
Now change line 20 so it looks like this:
20 PRINT #1,"E+50"
Run the program and observe the E motor (shoulder) movement.

Change line 20, one motor at a time, to move the D, C, and B motors. Don't use the A
motor for now because of its limited travel. Just change the letter to that corresponding to
the motor you want to move.

For now, do not use any number other than 50 for the number of steps.

More About The START Command--The Error Registers

Now that you have used the basic START command, you are ready to learn more about
it.

Consider our first START command "F+50" as an example. When we sent that
command (using the PRINT statement), the motor "F" moved. But much more than that
happened.

The MARK Il controller maintains an 8 bit error register for each of the 8 motors. When
the error register for a specific motor is zero, the controller removes all power to the
motor and the motor remains stationary. When the error register is non-zero, the
controller connects either a positive voltage or a negative voltage to the motor. The
polarity of the power is a function of what is in the error register. If the error value is
positive, the motor moves in one direction and if it is negative, the motor moves in the
other direction. Before we sent a command, the error registers for all the motors were
zero.

A START command adds the motor movement value to the error register for the motor
specified. In our example, that motor was the F motor. The value added was 50.

As soon as a value is added to the error register for a motor, the controller starts that
motor in the direction that will take the error register to zero. As the motor moves, the
encoders are read and the count in the error register is decremented. When the error
register reaches zero, the power is turned off. So, when our START command added 50
to the F motor register, the controller moved that motor 50 encoder steps in the right
direction to return the error register to zero.

The command "F-50" adds a value of -50 to the F motor error register. When the

Page 6-3

XR Owner's Manual

controller receives a "-" sign, it moves the motor in the opposite direction from the +
direction to reach the zero error position.

Remember:

1. A START command adds a value to the designated motor's error
register.

2. The value added to the error register represents the number of steps the
designated motor encoder must move to return the register to zero.

3. The controller software is designed so that motors seek the zero error
condition.

4. The signin the START command designates direction of motion.

With this in mind, move on to the next command, the QUESTION command.

THE QUESTION COMMAND
Type in the program listed below.

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 PRINT #1,"F+50"

30 PRINT #1,"F?";: GOSUB 90

40 IF W<>0 THEN 30

50 PRINT #1,"F-50"

60 PRINT #1,"F?";: GOSUB 90

70 IF W<>0 THEN 60

80 END

90 IF LOC(1)=0 THEN 90 ELSE W$=INPUT$(LOC(1),#1)
100 W=ASC(W$)-32

110 RETURN

Run the program and you will see that it simply turns the waist in one direction and then
In the other. You might be wondering why we did not simply follow line 20

20 PRINT #1,"F+50" with
50 PRINT #1,"F-50"

Instead, we send a QUESTION command on line 30. Why?

Page 6-4

XR Owner's Manual

Remember that a START command adds a value to a motor's error register. If we sent
an "F-50" immediately after the "F+50", the -50 count in the second command would
combine with the remains of the +50 command and sent the F motor in the opposite
direction before it completed the full "+50" steps in the first START command. The
QUESTION command allows us to check the error register and make sure the first 50
steps have been executed before the next series of (-50) steps are sent.

How The QUESTION Command Works

The QUESTION command instructs the MARK Il controller to return the current value of
the error register for a specific motor. Specifically, it asks how much further the
designated motor must travel until the register is again zero. In our sample program,
after we sent the first START command, we immediately sent a QUESTION to check the
status of the F error register.

We do so on line 30. Again "F" designates the motor. The QUESTION command is
accomplished with the "?". Line 30 also calls a subroutine to allow your computer to
receive the answer to the QUESTION. That subroutine, which begins on line 90, is
written so you can use it any time you use a QUESTION or any inquiry command in your
programs.

Line 40 loops through the QUESTION until the answer (W) is zero. When it is zero, we
know that the error register is zero and all the original steps have been executed. Only
then does the program move on to send the START command in the opposite direction.

More About The Question Command
Making A Longer Move

Thus far, our sample programs have limited START commands to 50 steps. The reason
has to do with the error registers and communications. Two factors create problems.

1. The largest signed decimal number we can store in an 8 bit error register is
127 (1 bit for the sign of the number, and seven bits to represent up to
127). Numbers larger than 127 will overflow the register. When this
happens, the register overflows into the sign bit. This reverses the sign in
the error register and thus reverses the motor. In other words, the motor
can start to move in the opposite direction to that specified in the START
command if the register overflows.

2. When the controller receives a QUESTION command, it automatically adds

Page 6-5

XR Owner's Manual

32 (hexadecimal 20) to the answer before it transmits it to the host
computer. It does so because some computers treat values below decimal
32 (hex 20) as commands instead of data. Note that in subroutine 90, line
100 subtracts 32 from the answer received in response to the QUESTION
command. This compensates for the 32 added by the controller. Since the
communication line is set for 7 data bits, the largest value that can be
returned is 127 which means that the largest value the controller can send
is 127-32 or 95.

A motor's error register can be zero, but it can never be lower (because we use the sign
bit for direction of travel of the motor). In other words, you can find how far a motor is
from the zero position but you cannot find out what direction the zero position is in. The
error count is always positive. By adding 32 to every value it transmits to the host
computer, the controller ensures that the computer never receives an answer less than
32 (hex 20).

EXAMPLE - Suppose you send a START command of 120 steps. The motor starts to
seek zero immediately. If the controller receives a QUESTION when the motor has
traveled 20 steps, the answer sent back (the number of steps until zero) will be 100. But
the controller will add 32 to the 100 before it sends the answer back to the host. 132 is
more than you can represent with 7 bits so the communication line will truncate the 132
to 7 bits and an error will occur.

All this may seem puzzling to you at first, however you will begin to understand the
system as you work with it. If you are confused, just keep this rule in mind:

DON'T LET THE ERROR REGISTER EXCEED 95
"But," you may be asking, "how do | get the XR to execute a move longer than 95 steps?”

The answer is to first add a value to a motor's error register with the START command.
Monitor the status of the error register with the QUESTION command. Then, add to the
register with another START before the register reaches zero, but do not add so much as
to exceed the 95 limit.

The following program illustrates one way to make a move of 500 steps.

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 FORI=1TO 10

30 PRINT #1,"F+50"

40 PRINT #1,"F?";: GOSUB 90

50 IF W>45 THEN 40

Page 6-6

XR Owner's Manual

60 NEXT

70 END

80 IF LOC(1)=0 THEN 80 ELSE W$=INPUT$(LOC(1),#1)
90 W=ASC(W$)-32

100 RETURN

This program uses two key techniques to accomplish the 500 step move.

1. The FOR/NEXT loop that begins on line 20 divides and conquers by
adding 500 steps to the F motor error register, 50 steps at atime. It loops
the computer through line 60 ten times, then exits the loop.

2. The IF / THEN statement on line 50 loops the computer through the
QUESTION command on line 40 until the answer is 45 or less. When the
answer is 45 or less it is safe to continue through the FOR loop and add
the next 50 steps without exceeding the 95 limit.

Remember that in our simple program to rotate the F motor back and forth, the program
looped until all of the first 50 steps were executed. This was necessary because the
second move was in the opposite direction, and would have reversed the motor before it
completed the original 50 steps.

But for the long move above, we do not have to wait for the error register to reach zero
before adding to it. We want to avoid letting the error register reach zero; because if it
does, the motor will stop. And we want to keep adding to the register without exceeding
95.

You might think of an error register as a gas tank. You never want it to get to empty, but
you can't let it overflow, either.

The program above showed one way to do this. it added 50 steps to the register, and as
soon as there was room for another 50, it added still another 50.

The program worked as an illustration, but it has drawbacks. The most important
drawback is that it waits for the register to come all the way down to 45 before it adds
more steps. This was not a problem here, but as you program more complex moves, and
connect accessory motors to the controller, the computer will be busy, and timing will
become more critical. You will have less time to check and fill the registers.

A better way is to always fill the register as full as possible. Instead of deciding

beforehand when and how many steps to add, let the computer calculate how many
steps it can add without exceeding 95, and automatically add that many steps. The

Page 6-7

XR Owner's Manual

following program does just that.

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 N=500

30 H=95 p

40 IFN<HTHENSO

50 PRINT #1,"F+"; STR$(H): N=N-H

60 PRINT #1,"F?";: GOSUB 90: H=95-W

70 GOTO 40

80 PRINT #1,"F+";STR$(N): END

90 IF LOC(1)=0 THEN 90 ELSE W$=INPUT$(LOC(1),#1)
100 W=ASC(W$)-32

110 RETURN

In line 20, N represents the total number of steps we want the motor to move. We used
500, but you could change N to any number of steps.

We use H as the variable for the number of steps we add to the error register. In line 30,
we assign H an initial value of 95; the maximum number we can safely add to the error
register.

In line 50, we send a START command that is slightly different than the ones we have
used up to now. Instead of specifying the number of steps, we use the variable H. Line
50 adds H number of steps to the F motor error register. Since we have assigned H an
initial value of 95, the computer will add 95 the first time it executes line 50. Line 50 also
subtracts H from N, it decrements our original total steps by the number added to the
error register.

Line 60 sends a QUESTION command and calls the subroutine to send the command
and receive the answer (W).

Line 60 also assigns H a new value, 95-W. Since W represents the number of steps the
F motor must travel before the error register is zero, 95-W is the number of steps we can
add to the error register without exceeding 95.

Therefore, H now becomes whatever number required to bring the error register to 95.
Line 70 loops back to line 40. Line 40 checks whether N is less than or equalto H. If N

is not less than or equal to H, the computer goes to line 50 to add H more steps to the
error register to keep the motor moving.

Page 6-8

XR Owner's Manual

The program will repeat this loop until N<H. Remember, line 50 subtracts H from N each
time H has been added to the error register. So N, our original number of steps, gets
smaller each time through the loop.

When N<H, the computer goes to line 80, another START command. This START
command, however, adds N steps to the error register instead of H steps. At this point,
sending N steps completes the original N=500 steps.

As you can see, this method keeps the error register as full as possible. When you write
programs to run several motors, this will be critical. Since the program will have to check
more than one error register (by means of the QUESTION command), it is important to fill
the error register completely each time the QUESTION command is sent. Otherwise, the
error register may run to zero (the motor stops) by the time the computer gets back
around to check.

The STOP And INQUIRY Commands
In this section we introduce you to the STOP and INQUIRY commands. We'll talk about
each separately and then provide a sample program that uses both.
The STOP Command
When you use a START command, a motor will travel the assigned number of steps and
stop. But as you develop programs of your own, you'll need to stop motors under
specified conditions.
For example, many applications present the possibility of running the robot arm into an
object. If the robot crashes into an obstacle, you need a way of recovering from the
accident without losing your program and positional information. A servo motor will try to
keep moving as long as it has power (ie., as long as its error register is non-zero). The
STOP command enables us to bring a specific error register to zero on command.
A STOP command looks like this for the IBM PC:

PRINT #1,"FX";

"F" designates the motor

"X" is the STOP command

Page 6-9

XR Owner's Manual

With the STOP command, your programs can incorporate protections against stalls. You
can use the QUESTION command to check the status of an error register. The program
would send the controller a STOP command in the event that the (a non-zero) error
register status did not change during a number of successive checks.

Another use of the STOP command has to do with the microswitches mounted on the XR.
The next section, which covers the INQUIRY command, will illustrate the use of the STOP
command with the INQUIRY command.

The INQUIRY Command. Reading The Microswitches

The XR is equipped with six microswitches, one for each of the six motors on the arm.
Each axis closes its switch at a defined point. Therefore, we have an identifiable and
repeatable orientation point for each axis on the XR; the point at which the microswitch
is closed.

The INQUIRY commands (I and J) gives us the means to determine whether any of the
switches on the robot arm are closed at a given time. The MARK |l controller can read
switches on all its ports. So, as your XR is connected now, the controller reads the
switches as follows:

Can controller Command
Motor Port Joint read switch? Used
A A Fingers Yes J
B B Wrist Yes J
C C Wrist flex Yes [
D D Elbow Yes |
E E Shoulder Yes |
F F Waist Yes I
G G Accessory Yes I
H H Accessory Yes I

In the standard configuration, with motors A-F connected to ports A-F on the controller,
the I-INQUIRY command reads motors C-F on the XR-3 and G and H on the
accessories.

In order to read the A and B port switches, it is necessary to use the J-INQUIRY
command.

Page 6-10

XR Owner's Manual

Using the | and J-INQUIRY Commands

The INQUIRY commands work much like the QUESTION command. Each requires the
same subroutine to send the command and to receive the answer. The controller adds
32 to the answer before it transmits it to your computer to avoid ASCIl command codes,
and the receiving subroutine subtracts 32 to yield an accurate answer.

But instead of designating individual motors when you send the INQUIRY, you send the
command and interpret the answer according to the port you wish to read. The
command looks like this:

PRINT #1,"I"; (or "J™)
GOSUB XXX

where XXX is the number of the same subroutine you've used for the QUESTION
command. The subroutine enables the computer to receive the answer to an INQUIRY.
Interpreting The Answers

We will discuss the I-INQUIRY command only. The J-INQUIRY is similar but gives
different information.

The key to using the INQUIRY command is interpreting the answer sent back from the
controller. Remember that the controller communicates using one byte only, and that the
single byte answer uses one bit in the byte for each switch.

The bits are assigned to the ports as follows:

Port Bit

'IOMMOO
AR WN=O

6 not used
- 7 notused MSB

A microswitch can either be open or be closed. When a switch is open, the
corresponding bit contains a one. When all switches are open, all six bits contain a one,

Page 6-11

XR Owner's Manual

which has a decimal value of 63. (In fact, the controller sends a 95. Remember that the
controller adds 32 to anything it sends to your computer to avoid command codes. Our
subroutine to receive the answer automatically subtracts 32 to yield the true value.)

If a switch is closed, the corresponding bit contains a 0, and the answer to an I-INQUIRY
will be 63 minus a value unique to the open switch and bit. The table below illustrates
what happens when one switch is closed and all others are open.

IF THE SWITCH AT THE ANSWER RETURNED IN
PORT X IS CLOSED, RESPONSE TO AN INQUIRY
AND ALL OTHERS ARE OPEN BECOMES. (Ignoring the 32 count offset)
If X=C 62 (63-1)
If X=D 61 (63-2)
If X=E 59 (63-4)
If X=F 55 (63-8)
If X=G 47 (63-16)
If X=H 31 (63-32)

As you can see, when a switch is closed, a value unique to that switch is subtracted from
63. If we could be sure that only one switch is closed at any one time, things would be
simple. We could just send the I-INQUIRY command and check the answer to determine
if the switch we were checking for was closed.

The problem is, at any one time, more that one switch may be closed. The answer
received will be 63 minus the sum of the values for all closed switches. For example, if
switches C, D, and E were closed when we sent the INQUIRY, the answer returned
would be 56 ((63-(1+2+4)).

To check for any one switch, we must mask the answer for the other switches that might
be closed.

The following subroutine does just that. We would call this subroutine after sending an
INQUIRY and receiving the answer. The variable W represents that answer, and we are
checking whether the D microswitch is closed.

100 C=0: D=0: E=0: F=0: G=0: H=0
110 IF W>31 THEN H=1: W=W-32
120 IF W>15 THEN G=1: W=W-16
130 IF W>7 THEN F=1: W=W-8
140 IF W>3 THEN E=1: W=W-4
150 IF W>1 THEN D=1: W=W-2
160 IF W>0 THEN C=1

Page 6-12

XR Owner's Manual
170 IF D=1 THEN XXX (Go to desired point in the program).

Let's run through the subroutine with an actual value to see how it works. Assume that
the C and D switches are closed, but that we only care about the D motor. Remember
that if all switches are open, the answer returned in response to an I-INQUIRY command
is 63.

Remember also that if a switch is closed, the answer returned will be 63 minus a unique
value for that switch:

SWITCH CONTROLLER
CLOSED SUBTRACTS

C 1

D 2

E 4

F 8

G 16

H 32

Given this, we know that if switches C and D are closed, the answer returned in
response to the INQUIRY command will be 60.

Let's see how our subroutine determines whether the D switch is closed.

Line 100 assigns a variable to each switch. It simply uses the letters assigned to each
port. It assigns the value zero to each variable to initialize it to a known quantity. As
discussed above, zero corresponds to an open switch.

Line 110 checks to see whether the H switch is closed. We know that when W>31 the H
switch is open. We know this because even if the H switch were closed and all others
open, W would be at least 31. Therefore, if W>31, the H switch must be open. Since W
is sixty, the H switch is open, and we can now set H=1 to indicate that it is open.

If H is open, we know that 32 is part of W. Before checking the G switch, we must mask
the 32. That's why before moving to line 120, we set W=W-32. So now W=28.

Line 120 checks the G switch. We know that if W>15, the G switch must be open
because even if all other switches were open (remember we've masked the H switch),W
would be only 15. Now G=1 and we again mask because we know it is open. Now W =
28-16 = 12.

Understand how the routine checks for each switch and masks for its value before

Page 6-13

XR Owner's Manual
reading further. Run through line 130 with 12, then take the new W and run through 140.

After line 130 and line 140, W should equal 0. The next line, 150, checks for the D
switch. Let's see what happens when a switch is closed.

150 IF W>1 THEN D=1:W=W-2

Since W now is 0, and 1 is not greater than 1, D remains zero. W remains 0, as there is
no value to mask.

Line 160 checks for the only remaining switch, the C switch.
160 IF W>0 THEN C=1

Since W is still zero, and zero is not greater than zero, C remains zero. Since all
switches have been checked, the subroutine ends here.

With the subroutine complete the variables are now as follows:

(C switch is closed)
(D switch is closed)
(E switch is open)

(F switch is open)
(
(

-+ OO0

mnn
-

G switch is open)
H switch is open)

I®
[N

Since we are checking for the D switch, we have to use an IF... THEN ... statement to
make the results of the subroutine useful. For example:

IF D=0 THEN XXX

where XXX represents the line we want to execute if the D switch is closed.

The STOP and INQUIRY Commands. A Sample Program

The program below supposes that an accessory, the carousel, is connected to the G port
on the controller. It runs the carousel and uses the INQUIRY command to detect when
the cam on the carousel closes the microswitch. When the microswitch is closed, the
carousel (G motor) is sent a STOP command, bringing the G error register to zero to stop
the motor.

Page 6-14

XR Owner's Manual

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 PRINT #1,"G+50"

30 PRINT #1,"I";: GOSUB 110

40 GOSUB 140

50 IF G=0 THEN 90

60 PRINT #1,"G?";: GOSUB 110
70 IF W>45 THEN 30

80 GOTO 20

90 PRINT #1,"GX";

100 END

110 IF LOC(1)=0 THEN 110 ELSE W$=INPUT$(LOC(1),#1)
120 W=ASC(W$)-32

130 RETURN

140 C=0: D=0: E=0: F=0: G=0: H=0
150 IF W>31 THEN H=1: W=W-32
160 IF W>15 THEN G=1: W=W-16
170 IF W>7 THEN F=1: W=W-8

180 IF W>3 THEN E=1: W=W-4
190 IF W>1 THEN D=1: W=W-2
200 IF W>0 THEN C=1

210 RETURN

Line 20 lists a START command, adding 50 steps to the G motor error register to get it
started.

Line 30 sends the INQUIRY command to immediately begin checking the switches. (Line
30 also calls the subroutine to transmit the command and receive the answer.)

Line 40 calls the subroutine to interpret the answer to the INQUIRY.

Line 50 checks whether the G switch is closed (G=0). Ifit is closed, it sends the
computer to line 90, a STOP command.

Line 60 checks the status of the G motor error register and calls the subroutine to send
the command and receive the answer.

Line 70 sends the computer back to the INQUIRY command if there is not enough room
in the G motor error register for another 50 steps.

Line 80 loops back to line 20 to add 50 more steps to the error register and keep the G
motor moving.

Page 6-15

XR Owner's Manual

Line 90 is the STOP command executed when the G switch is found. It brings the G
motor error register to zero, stopping the motor.

The rest of the program lists the subroutines that we have already discussed.

Note that we use 50-step increments in our START command. But as discussed earlier,
in more complicated programs it is better to start with 95 steps and fill the error register
as full as possible each time, just as illustrated earlier.

A More Efficient Subroutine To Interpret Answers To An Inquiry Command

The routine we have used to interpret answers to an INQUIRY worked as an illustration.
But it is long and awkward. Now that you know how to interpret an answer, here is a
shortcut.

It uses the AND operator, which is part of IBM BASICA. It allows you to check specifically
for the bit corresponding to the switch you are checking.

To show you just how much easier using the AND operator is, the line below would
replace the entire subroutine--lines 140 through 200 in the sample program just given.

IF W AND 16 THEN XXX ELSE XXX

The AND operator is based on principles that require a lengthy explanation. You can
find more information in your IBM BASIC manual.

But to use the AND operator, you really only need to know the following:
1. The integer values that correspond to each switch when it is open are:

SWITCH INTEGER

C 1
D 2
E 4
F 8
G 16
H 32

Page 6-16

XR Owner's Manual

2. Any time you use the AND operator to check the status of a single
microswitch, just substitute the integer value for that switch for the 16.
For example, if you want to check the H switch, the line should look like
this:

IF W AND 32 THEN H=1 ELSE H=0

When the microswitch checked is closed, the computer executes the command listed
after ELSE (ie. H=0) and when the microswitch checked is open, the computer executes
the program line listed after THEN (ie. H=1).

Hard Home

Now you have seen how the INQUIRY command works to read the microswitches. You
may want to use the INQUIRY for any number of reasons, but an important reason will be
to find a repeatable starting robot position.

You may want to write a program to move the robot from point A to point B. That program
won't work more than once unless the robot starts from the same point each time you run
it. The way to establish such a starting point is to send each axis to the position where it
actuates the microswitch and stop it there.

We call this switch defined robot position the hardware home position, or hard home
for short. We've written a hard home program for your IBM-PC. This program finds the
microswitches for motors D, E, and F and stops each motor in this position. In fact, it
finds the center of each microswitch, that is, it stops at the midpoint between the point at
which the switch closes and the point at which it reopens. This precision is vital if you -
wish to repeat programs accurately.

You'll find the program in the Appendices.

In practice, you should call the hard home routine once before each of your
programming sessions begins.

Our hard home routine sets only three switches. You may wish to modify it to set the
other three. If you do, remember that ports A and B of the controller are read with the
J-INQUIRY command. Address them accordingly in your commands.

Note: The fingers and wrist flex, there are readily identifiable visual references. The

Page 6-17

XR Owner's Manual

fingers can be opened as far as they will go. The hand should be perpendicular to the
work surface, fingers down and parallel with the body.

SUMMARY OF COMMANDS AND SUBROUTINES
The OPEN COMMUNICATIONS line should begin each program. It opens a
communications file at 9600 BAUD, 7 data bits, even parity, 2 stop bits, and disables time
out errors.

OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
The START command moves a specified motor a specified distance and direction by
adding a value to the motor's error register.
Example:

PRINT #1,"F+50"
PRINT #1 sends the command through communications file #1

"F" designates the motor

"+50" designates the number of encoder holes (distance) to be moved

and direction (+) to be moved. A - sign before the 50 would reverse
the motor 50 steps.

The_z QUESTION commahd asks how much further a motor must travel until its error
register is zero.
Example:

PRINT #1,"F?"

PRINT #1 sends the command through communications file #1

"F" designates the motor being checked

"?" is the QUESTION command

Page 6-18

XR Owner's Manual

The QUESTION must always be followed by the input subroutine that allows the
computer to receive the answer.

The STOP command brings a designated motor's error register to zero, stopping the
motor.

Example:
PRINT #1,"FX"
PRINT #1 sends the command through communications file #1
"F" designates the motor

"X" is the actual STOP command

The INQUIRY command asks whether the microswitches are opened or closed.
Example:

PRINT #1,"I';

PRINT #1 sends the command through communications file #1

"I" is the command
An INQUIRY command must always be followed by the input subroutine that allow the
computer to receive the answer. In addition, a subroutine to interpret the answer must
follow the input subroutine. The semi-colon should follow the PRINT statement to
suppress the sending of a carriage return which is interpreted by the MARK Il controller
as a motor move command.
Output/Input subroutine--use after every QUESTION and INQUIRY command.

nnn IF LOC(1)=0 THEN nnn ELSE W$=INPUTS$(LOC(1),#1)

W=ASC(W$)-32
RETURN

Page 6-19

XR Owner's Manual

Subroutine to interpret answer to an INQUIRY command--call after command is sent and
Input subroutine is called.

IF W AND N THEN XXX ELSE XXX
W is the answer received in response to an INQUIRY command

N is the integer value corresponding to the bit of the switch to be
checked

THEN XXX will be executed if the switch is closed. XXX indicates the
line to be executed.

ELSE YYY will be executed if the switch is OPEN. YYY indicates the line
to be executed.

USING THE INPUT/OUTPUT COMMANDS

The MARK Il controller has eight TTL inputs, eight TTL outputs and two unencoded
motor power port called the AUX ports. Eight commands are available to completely
control these features. The use of these commands follow closely the format already
developed to control the motor movements; in fact they use the same subroutines.

The MARK lll inputs and outputs are TTL compatable and should be treated as low
current (less than 15ma at 5 VDC) devices. Do not apply an external voltages to these
ports, use the 5 volt source provided on the I/O front panel. The inputs are internally
pulled up by 10k ohm resistors and therefore appear to be ON when left unconnected.
To control the inputs, a switch should be connected to the input port and the ground
terminal. When the switch is closed the input will be OFF; with the switch open the input
will be ON.

The outputs are active LOW which means that when the port is ON the output will be
LOW and when the port is OFF the output will be HIGH.

The following pages will give examples on how to implement each of these commands.

Page 6-20

XR Owner's Manual
J-Inquiry Command. Read Inputs 1 through 4

The J command, like the | command, returns a byte in which the first four bits represent
the state of inputs 1 through 4 as follows:
Bit Input

WN-I-Ol
BN =

The same type of routine that was used with the | command can be used to set an arry
variable to a 1 or a 0 dependent on the state of the input. Here we will use the variable |
to represent the inputs, with 1(0)=Input 1, 1(1)=Input 2 etc.

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 PRINT #1,"G+50"

30 PRINT #1,"J";: GOSUB 110

40 GOSUB 140

50 IF I(1)=1 THEN 90

60 PRINT #1,"G?";: GOSUB 110

70 IF W>45 THEN 30

80 GOTO 20

90 PRINT #1,"GX";

100 END

110 IF LOC(1)=0 THEN 110 ELSE W$=INPUT$(LOC(1),#1)
120 W=ASC(W$)-32

130 RETURN

140 FORT=0 TO 3

150 IF W AND (2 A T) THEN I(T)=1 ELSE I(T)=0
160 NEXTT

170 RETURN

This program will move the G axis motor, a belt conveyor for instance, until INPUT #2 is
turned ON (high TTL level). In an actual workcell, a sensor which goes HIGH when a
part is detected would be connected to the input port; when the part arrives at the sensor
position, the conveyor will stop.

Lines 140 through 170 implement the routine that determines which inputs are ON by

checking each of the first four bits in the byte returned by the controller in response 1o the
J command. Line 50 checks if the input is ON; if it is, the STOP command is executed

Page 6-21

XR Owner's Manual

and the G port is turned off.

K-Inquiry command. Read inputs 5 through 8.

The implementation of the K command is identical to the J command except that the
returned byte contains the state of inputs 5 through 8 in the low four bits. The routine that
determines the state of each input is identical to the example program above; instead of
using a J in line 50 use a K.

Commands L, M, N, O. Sets the state of the AUX ports.

The two AUX ports on the MARK Ill controller provide + or - 20VDC motor power, the
polarity of which is determined by the setting of the reversing switches riear the AUX
ports. The four commands (L, M, N, O) set the AUX ports on or off, they do not set the
polarity of the output. These commands are simple one byte commands that do not
invoke a response from the MARK Il controller. The implementation of all four
commands is identical, therefore the following example will show how to turn on AUX#2
and then turn it off.

10 OPEN "COM?1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 PRINT #1,"N";
30 FOR J=1 TO 1000: NEXT
40 PRINT #1,"0";
50 END

Line 20 issues the N command which will turn on AUX port #2.

Line 30 implements a time delay to allow the user to see the effect of the AUX
commands.

Line 40 issues the O command which will turn off AUX port #2.
The MARK llI controller has two indicator lights connected to the AUX ports to indicate if

they are ON. Even of you have nothing connected to the AUX ports, this program can be
run and verified since it will cause the light on AUX #2 to come on then go off.

Page 6-22

XR Owner's Manual
P and R Commands. Set Output Lines High (OFF) and Low (ON)

Eight TTL level outputs are available on the MARK 11l controller, each of which can be set
or reset upon command. The P command instructs the controller to turn OFF an output
(make the output go high); the R command instructs the controller to turn ON an output
(make the output go low). The format of both commands is the letter of the command
followed by the port number that is to be changed.

Suppose it is desired to initialize output #3 by turning it off and then to turn on output #3
when the robot comes to rest to indicate that the material handling operation has been
completed. The following program will initialize move the waist 240 counts and then turn
ON the output.

10 OPEN "COM1: 9600, E, 7, 2, CS, DS, CD" AS #1
20 PRINT #1,"P3";

30 N=240

40 H=95

50 IF N<=H THEN 90

60 PRINT #1,"F+" + STR$(H): N=N-H

70 PRINT #1,"F?": GOSUB 140: H=95-W

80 GOTO 50

90 PRINT #1,"F+" + STR$(N)

100 PRINT #1,"F?": GOSUB 140

110 IF W>0 THEN 100

120 PRINT #1,"R3";

130 END

140 IF LOC(1)=0 THEN 140 ELSE W$=INPUT$(LOC(1),#1)
150 W=ASC(W$)-32

160 RETURN

This program is familiar to you by now since it implements a long move as discussed
previously. However, line 20 directs the controller to turn off output #3 before starting the
programmed motor move. Lines 30 through 90 implements the long move. The program
waits until the robot comes to a complete stop in lines 100 through 110. Upon
completion of the move, line 120 outputs the command to turn on port St

Page 6-23

N

XR Owner's Manual

CHAPTER SEVEN

MAINTAINING THE XR

This section shows you how to perform simple but important maintenance on the XR-3
arm. It describes and illustrates the drive train for each axis and then explains how to

maintain it.

We suggest that you run through this section once after your first session with the XR-3.
After that, keep in mind the points we cover as you use the robot.

WAIST MOTOR

TENSIONER

Figure 7.1
Waist (F Motor) Drive

Page 7-1

XR Owner's Manual
THE WAIST (F MOTOR) DRIVE

Refer to figure 7-1 to identify the waist drive components. The F motor, which drives the
waist, is mounted in the base housing below the actual waist pivot. A sprocket on the
motor shaft drives a chain connected to the hollow waist shaft. The waist shaft extends
through the base, and then connects to the robot body.

Maintenance
The only maintenance recommended for the waist drive system is the monthly oiling of

the chain tensioner roller. Using a lightweight oil, apply one drop to the upper surface of
the wheel allowing the oil to reach the roller shaft.

S~

DRIVE)
SPROCKET -7
g

\ DRIVE CHAIN

Figure 7.2
Shoulder (E Motor) Drive

Page 7-2

XR Owner's Manual

THE SHOULDER (E MOTOR) DRIVE

Moving upward from the waist, the next joint (or axis) is the shoulder. Refer to figure 7-2
to identify the shoulder drive components.

The E motor mounts on the left side of the robot body, the side with two motors. The E
motor is the lower of the two.

A sprocket mounted on the E motor shatft drives a chain. That chain drives a larger
sprocket attached to the upper arm.

The large sprocket and upper arm pivot on an axle common to other sprockets, but they
move independently.

Maintenance

First make sure that the sprocket on the motor shaft is fastened securely onto the motor
shaft, and that it is aligned with the drive sprocket. Check that the chain runs a straight
path from sprocket to sprocket. To adjust alignment, loosen the set screw on the motor
sprocket and slide the sprocket along the motor shaft as necessary.

The set screw on the motor sprocket should be centered and tight over the flat portion of
the motor shaft.

Next, test the drive chain tension. Applying no more than one pound of force in the
middle of the chain span, there should be no chain deflection. If there is excessive play
in the chain, adjustment will be needed.

To adjust chain tension, locate the two E motor mounting screws visible on the inside of
the robot body. Loosen them and rotate the E motor to adjust the tension. Refer to
figure 7-2 if necessary. Tighten the screws when the chain is in proper adjustment.
Make sure that the chain has a slight amount of play in it at all positions of the arm.
There may be points where it is tighter than at other points.

Page 7-3

XR Owner's Manual

THE ELBOW (D MOTOR) DRIVE

The next axis up, moving away from the base along the arm, is the elbow. Refer to figure
7-3 to identify the elbow drive components.

o -~
FOREARM T @ %
SPROCKET /\/ W
h1 T
. } . SN
\ﬂ J NN | o0
_— \ S |\ . oy
- FOREARM
TENSIONER S NS 27
WHEEL
TRANSFER CHAIN) . %m - | \
= ! \ ™ ADUSTING CAM

£ TN\ R
s N\ N M
NA | M |

Fs

- ,\ \\. :'\\‘:\
_ 2)\ /
"y h] 1
\ \
\ /
\"‘\
PRIMARY CHAIN \ ~
; SECONDARY

\ SPROCKET

N Py
- 4
N

RN

Figure 7-3
Elbow (D Motor) Drive

Page 7-4

XR Owner's Manual

The D motor mounts on the right-hand side of the robot body, it is the only motor
extending from that side.

The elbow uses a two part drive.

At the primary drive, a sprocket on the D motor drives a chain, which in turn drives a
larger sprocket called the primary sprocket. In this way, the primary drive is basically the
same as the E motor drive.

The secondary sprocket drives the secondary chain, which in turn drives the forearm
sprocket.

Maintenance
Check the primary drive from the D motor as you did the E motor drive.

1. Check for alignment between the motor sprocket and primary sprocket.
- Make adjustments by moving the motor sprocket along the motor shaft.

2. Check chain tension. Adjust by rotating the D motor in its mounting slots.
Refer to the previous section on motor E if necessary.

Your main concern on the secondary drive is chain tension. Because the motor is not
part of the secondary drive, an eccentric chain tensioner is used. Test the chain as
before, but be sure to check the section that does not run over the tensioner.

If the chain is not snug, you must make an adjustment. To do so, locate the set screw
that extends from the inner hub of the chain tensioner. Loosen the screw and use it as a
lever to rotate the tensioner. Because it is a cam, turning the tensioner in one direction
increases chain tension, moving it in the other decreases tension. Rotate the tensioner
until the chain is snug when you test it. Then tighten the set screw on the adjusting hub.
Make sure that the tensioner is able to rotate freely on the tensioner cam. If it can not,
clean and lubricate it so that it can.

Page 7-5

XR Owner's Manual

/ ROTATION OF

MOTOR HOUSING

Figure 7.4
Chain Tension Adjustment

Page 7-6

XR Owner's Manual

THE HAND (C MOTOR) DRIVE

The next axis up, moving away from the waist, is the wrist flex. Refer to figure 7.5 to
identify the wrist flex drive components.

/ELBSW AXIS
/ s _/ \"\

~

~

CHAIN TENSIONER

TRANSFER CHAIN

Figure 7.5
Hand (C Motor) Drive

Page 7-7

XR Owner's Manual

The C motor mounts on the left-hand side of the robot--it is the upper of two motors
mounted on that side.

The wrist flex uses a three-part drive.

The primary and secondary drives resemble the primary and secondary drives of the
elbow.

A sprocket on the C motor drives a chain, which in turn drives a primary sprocket. As on
the elbow, this sprocket attaches to and drives a third sprocket.

This secondary sprocket drives a chain and fourth sprocket. This fourth sprocket,
however, attaches to and drives a sprocket called the elbow hub.

This sprocket drives a chain, which in turn drives the wrist sprocket. This second
sprocket attaches to and drives the hand to produce wrist flex.

Maintenance
Maintain the primary and secondary drives as you would the drives for the elbow.
On the primary drive do the following:

1. Check alignment between the sprockets. Adjust by moving the motor sprocket
along the motor shaft;

2. Check chain tension on all chains. Adjust the proimary chain's tension by

rotating the C motor in its mounting slots. The remaining chains are tensioned
by adjusting the appropriate chain tensioner.

Page 7-8

XR Owner's Manual
THE WRIST ROTATION (B MOTOR) DRIVE

Moving away from the waist and toward the fingers, the next axis is the wrist (figure 7.6).

SET SCREW

WRIST AXIS

Figure 7.6
Wrist Rotation (B Motor) Drive

The wrist uses a very simple drive train. A pinion gear mounted on the B motor shaft
drives a gear attached to the wrist plate.

Maintenance

The only maintenance required on the wrist rotation is checking the gears. Each gear
has a set screw. Make sure that both are tight and in alignment with one another. Make

Page 7-9

XR Owner's Manual

sure that the small gear does not hit the wrist plate above the large gear when the hand
rotates.

CAUTION: Overtightening the set screw on the larger plastic gear can strip the threads.
As long as the gear does not slip, the set screw is sufficiently tight. If you must tighten the

set screw, do so in small increments. Check the gear after each increment, and stop as
soon as the gear no longer slips.

THE FINGER (A MOTOR) DRIVE
The A motor mounts on the top of the hand. Refer to figure 7.7

The push-pull arm mounts directly on the A motor shaft. This arm drives the long arm
link, which mounts and pivots on the end of the push-pull arm.

The long arm link drives the long actuating arm. The long arm link also pivots at the end
of the long actuating arm.

The long actuating arm mounts on the transfer shaft that extends inside the hand. There,
the intermediate actuating arm mounts on the same transfer shaft, and must be paraliel
to the long actuating arm.

The intermediate actuating arm drives the short arm link. The short arm link drives
(pushes or pulls) the actuating rod.

In turn the actuating rod drives the tendon nut, which opens or closes the finger
depending on the direction the motor is turning.

Page 7-10

XR Owner's Manual

PUSH-PULL ARM

, i’ A INTERMEDIATE
LONG ARM LINK . ACTUATING ARM
TRANSFER \\
SHAFT

\ SHORT ARM LINK

SHORT A
Lonc l | L R Agl'\l'nUATING
ACTUATING ARM | =
7 ACTUATING
] ROD
WRIST GEAR 1\%\ SET SCREW
! M TENDON NUT
HEH CLlP
Figure 7.7

Finger (A Motor) Drive
REMOVING FINGERS

To remove the standard fingers, as you must to install any optional end-of-arm tooling,
refer to figure 7.7. To remove the fingers, remove the E clip below the tendon nut and

Page 7-11

XR Owner's Manual

loosen the set screw. Carefully insert a small screwdirver between the wrist gear and the
finger assembly to loosen. Once loose, the finger assembly can be removed by pulling
the finger assembly away from the hand.

Reverse the procedure to install optional grippers.

GENERAL MAINTENANCE

Besides the adjustments just given, follow these procedures.

1.

Make sure all large sprocket set screws are tight. You should have already
checked the motor sprockets. Now check all points at which sprockets attach to
other sprockets, arm section, or pulleys.

NOTE: Loc-tite™ or a similar product helps prevent set screws from coming
loose.

Check set screws that fasten the frame and tighten if necessary.

Lubricate the five drive chains. Use 3-in-1 oil. Apply a few drops from one
sprocket, along one length of chain to the other sprocket. Run the robot to
distribute the oil along the chain and sprockets.

Lubricate the chain guides. The guides are the hubs mounted on the
tensioners. The guides should rotate along with the chain. If they do not rotate,
tiny specks of aluminum will begin to flake from the guides.

Apply a drop of oil to the B motor gear and wrist gear.

Every moving part on the XR-3 can stand a drop of oil from time to time.

Page 7-12

XR Owner's Manual

CHAPTER EIGHT

IF YOU HAVE A PROBLEM

This section describes some very basic trouble shooting procedures.

PROBLEMS DISCOVERED DURING SETUP
If a motor does not respond properly, first try the obvious.
1. Make sure the controlier is plugged in.

2. Make sure the main power switch is on and the red pilot light on the front
panel of the controller is Iil.

3. Make sure the motor power switch is on.
4. Make sure that the motor cable is plugged firmly into its port.

It the motor still does not work, turn off the motor power on the controller and piug the
suspect motor into a port that is working. Turn the motor power back on and try the motor
again.

If the motor now responds properly, you know that the problem is in the original controller
port.

If the motor still doesn't work, you know that the problem can be anywhere from the cebie
connector to the motor itself.

Whether the problem lies in the controller port or in the motor and its ribbon cable, we
recommend that you don't try to repair it yourself unless you are a competent electronics
technician, especially while the unit is under warranty. Instead, we recommend you call

the RHINO Hotline (217) 352-8485.
When you call, describe the problem and we may be able to come up with a simple

solution. If we cannot, we'll give you a return authorization number and instructions on
how to return the faulty component.

Page 8-1

XR Owner's Manual

PROBLEMS ENCOUNTERED AFTER CONNECTING
TO A HOST COMPUTER

If all the motors checked out during setup, but the XR does not respond to commands
you give the controller, there is probably an interface problem. If you own one of the
computers covered individually in this manual, retrace the interfacing instructions from
the beginning.

Whatever computer you're using, make sure that you have plugged your computer into
the controller port labeled "Computer" on the Mark [l controller.

If you are using a computer other than one covered specifically in this manual, refer back
to the general interfacing chapter. Remember that the controller uses only three lines.

line 2 transmits to the host
line 3 receives data sent by the host
line 7 is a common data ground

If the XR is not responding, chances are your computer uses a protocol that requires a
signal that the controller does not provide. Remember that on the DB25 connectors, pins
6, 8 and 20 and pins 4 and 5 must have a jumper wire soldered between them.
Modifications to the connector for your computer depend on your computer. Recheck the
manual for your machine. Contact a service representative if necessary, and you can
always call the RHINO Hotline (217) 352-8485.

OPTICS PROBLEMS

If you send a START command to a motor and it starts but runs away (doesn't stop) in
one direction, optical encoder or the 74LS14 encoder line buffer is probably defective.

Also, if you determine that a motor is missing counts--that is it travels more or fewer steps
then you command, the encoders have a problem.

MECHANICAL PROBLEMS

If a motor turns but its axis does not, a sprocket or a chain is probably loose. Refer to the
maintenance chapter on mechanical maintenance for a remedy.

Page 8-2

XF Owner's Manual

CALL US

We built the XR to be rugged and dependable, and you probably will encounter few if
any problems. But if you do, remember that you can always call us. Before calling,
narrow the problem down as far as possible.

Be sure to have the serial number of your robot handy when you call. Slight changes
during production runs can make a difference when we are diagnosing your problem.

Even if you are sure you need to send a component back to us, call first. For us to accept
the component, you must have a return authorization number. And, if you do ship a
component back to the factory, pack it in the same materials in which you received it.

Remember, if you have a problem, call us at (217) 352-84885. Monday through
Friday, 9:00 a.m. to 5:00 p.m. Central Daylight Time.

Fage &-3

aa

.

XR Owner's Manual

CHAPTER NINE

PARTS--FIGURES AND LISTS

The following pages contain exploded-view diagrams for the XR-3 series robot. The
figures are accompanied by parts lists.

Although the diagrams were complete and accurate at the time of publication, minor
changes may have been implemented on subsequent robots. Because of this, your
robot may differ slightly from the following diagrams.

The reference numbers shown on the exploded drawings refer to the last four digits of
the Rhino Part Number. When ordering parts, please specify the complete part number.

Page 9-1

FIGURE

158

204

494

495

1359
1415
1416
1420
1421
1422
1424
1426
1427
1428
1429
1431
1470
1476
1543
1648
1650

XR Owner's Manual

PARTS LISTS

FIGURE 9.1: BASE COMPONENTS

PART NUMBER

10-40-158
30-140-204
50-301-494
50-301-495
15-70-1359
50-301-1415
15-41-1416
50-307-1420
50-307-1421
50-307-1422
50-307-1424
10-76-1426
50-301-1427
10-90-1428
50-301-1429
50-302-1431
99-308-1470
99-307-1476
50-307-1543
50-301-1648
50-301-1650

PART DESCRIPTION

Ball bearing 1602 DS
Microswitch

Base bottom

Base side-A

.125 x 1/2 Dowel pin
Base Center Plate
1/4-20 x 1/2 Shoulder bolt
Waist Shaft Bearing
Base Motor Mount Plate
Switch Mounting Plate
Chain Tensioner
Tensioner spring
Waist Drive Sprocket
48P #25 Chain

Base Top

Hollow Waist Shaft

F motor, Version 5

9 Tooth sprocket
Roller

Top Bearing Plate
Base Side - B

Page 9-2

QUANTITY

1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1

BASE ASSENMBLY
XR-3

XR Owner's Manual

PARTS LISTS

FIGURE 9.2: BODY COMPONENTS

FIGURE PART NUMBER PART DESCRIPTION QUANTITY
204 30-140-204 Microswitch 3
505 50-302-505 body bottom 1
507 50-302-507 body side 2
512 50-307-512 microswitch clamp 1
1430 50-302-1430 Switch Block 1
1433 50-302-1433 Body Rear Plate 1
1434 50-302-1434 Body Side Spacer 1
1467 99-308-1467 C motor, Version 5 1
1468 99-308-1468 D motor, Version 5 1
1469 99-308-1469 E motor, Version 5 1
1476 99-307-1476 9 Tooth sprocket 3

Page 9-4

SSEMBLY
—_ Y
o=

WA
v

BOT
VAR

(o))
31
0
=)
)

FIGURE

135
162
515
516
518
519
520
523
524
526
527
528
529
531
629
1022

XR Owner's Manual

PARTS LISTS

FIGURE 9.3: LOWER ARM COMPONENTS

PART NUMBER

15-23-135

10-44-162

50-307-515
50-303-516
50-307-518
50-307-519
50-307-520
50-307-523
50-307-524
50-303-526
50-307-527
50-307-528
50-307-529
50-307-531
10-44-629

50-307-1022

PART DESCRIPTION

1/4" nylon washer

5/8 x 1/4 x 7/16 bushing
1st section pivot shaft
lower right arm

72 T drive sprocket
drive sprocket spacer
1st section cam

collar 1/4"

36 T sprocket

lower arm spacer
tensioner eccentric
tensioner collar
tensioner wheel

2nd section pivot shaft
1/4" long bushing

1/4" sprocket spacers

Page 9-6

QUANTITY

O 2 =N ANNMNNOMNPRERON—W®

an L

ELY

=h ARM ACSE

er
LOWE

=3

FIGURE &.2

FIGURE

135
162
517
523
524
525
528
529
531
536
539
540
629

XR Owner's Manual

PARTS LISTS

FIGURE 9.4: UPPER ARM COMPONENTS

PART NUMBER PART DESCRIPTION
15-23-135 1/4" nylon washer,thin
10-44-162 5/8 L 1/4 x 7/16 bush
50-303-517 Upper Arm

50-307-523 Collar 1/4"

50-307-524 36 T sprocket, unthreaded
50-307-525 Sprocket support hub
50-307-528 Tensioner collar
50-307-529 Tensioner wheel
50-307-531 2nd section pivot shaft
50-303-536 Upper arm spacer
50-307-539 Upper tensioner shaft
50-307-540 Upper tensioner eccentric
10-44-629 1/4" long bushing

Page 9-8

QUANTITY

W2 2N 22PN A

UPPER ARM ASSEMZLY
XR-3

FIGURE .4

FIGURE

135
136
148
149
164
204
524
525
537
553
554
555
556
557
558
559
560
561
562
573
705
1087
1088
1477
1478
1480

PART NUMBER

15-23-135
15-23-136
15-30-148
15-30-149
10-44-164
30-14-204
50-307-524
50-307-525
50-304-537
50-304-553
50-304-554
50-304-555
50-304-556
50-304-557
50-304-558
50-304-559
50-304-560
50307-561
50-304-562
50-304-573
10-44-705

10-156-1087
50-305-1088
99-308-1477
99-308-1478

10-44-1480

XR Owner's Manual

PARTS LISTS

FIGURE 9.5: HAND & WRIST DRIVE COMPONENTS

PART DESCRIPTION

1/4" nylon washer,thin
#6 nylon washer,thin
Large E ring

Small E ring

3/4 L x 3/8 x 9/16 bush
Microswitch

36T sprocket, unthreaded
Sprocket support hub
Hand mount spacer
Hand mount frame

Hand rear frame

Hand intermediate frame
Hand bottom frame
Hand right frame

Hand left frame

Hand gear, small

Hand gear, large

Wrist shaft

Hand bearing block
Hand cam

Nylon bushing

7/32 Rubber spacer
Finger Actuator shaft

A motor, version 5

B motor, version 5

1/2L x 1/4 x 7/16 bushing

Page 9-10

QUANTITY

—L—L—L—L[\)N_L._L._L_L—L.—L—L—L—L—.L—LN—L—LN—LN—LI\)N

EMBLY

ND & WRIST DRIVE ASS

HA

XR-3
FIGURE 9.5

FIGURE

139
150
542
543
544
545
548
549
570
572
598
926
927
930
931
932
933
1482

XR Owner's Manual

PARTS LISTS

FIGURE 9.6: FINGER ASSEMBLY & LINKAGE

PART NUMBER PART DESCRIPTION
15-23-139 #10 nylon washer
15-70-150 steel pins 9Q32-0320
50-307-542 wrist plate
50-305-543 finger pivot post
50-305-544 finger tendon nut
50-305-545 finger actuating link
50-305-548 finger tip

50-305-549 finger shoulder screw
50-307-570 Cross shaft
50-307-572 Cross shaft collar
50-306-598 Finger, 1.5X
50-307-926 Long connecting link
50-307-927 Short connecting link
50-307-930 Pivot Head
50-307-931 Short cross shaft
50-307-932 Cross shaft arm long
50-307-933 Pull arm
50-307-1482 Actuator sleeve

Page 9-12

QUANTITY

—_

FINGER ASSELELY & LINKAGE

FIGURE

186
229
630
632
633
636
672
843

XR Owner's Manual

PARTS LISTS

FIGURE 9.7: TYPICAL MOTOR COMPONENTS

PART NUMBER PART DESCRIPTION
30-100-186 D.C. servo motor, large
10-156-229 Rubber grommet
50-302-630 Encoder mounting plate
50-302-632 Encoder base ring
50-302-633 Encoder end cap
99-304-636 Disk assm. - 6 state
30-241-672 Reflective optic
30-210-843 LM393 Voltage comparator

Page 9-14

QUANTITY

_LN_I._L—L_L_L_L

TYPICAL MOTOR COMPCINENTS
XR-3

FIGURE ¢.7

XR Owner's Manual

CHAPTER TEN

HARD HOMWE ROUTINES

HARD HOME PROGRAMS

The following pages list hard home routines for the Apple lie and the IBM PC. The
routines find the microswitches for motors D, E, and F--the elbow, shoulder, and waist
respectively--assuming that the motors are connected in the standard configuration. But
you can use these routines as guides to finding the other switches. These routines are
presented as samples--you will be able to improve and modify them to suit your
particular needs.

Note that these routines do not simply close the switches and stop. They find the switch
at full speed and then slow down. The robot travels slowly until it gets off the microswitch
and the switch reopens. The axis motor then reverses, travels slowly to close the switch
and then reopens it. The controller keeps track of how many steps the motor travels from
the open point to the close point. The routine then sends the axis back slowly half that
distance ensuring that the cam for that axiz not only closes the switch, but also that it
stops centered over that swiich.

Even if you do not have one of the compuicre aovered here, the routines provide a good
mode! for your own hard home routines.

XR Owner's Manual

Hard Home Routine for the Apple

This routine uses the Apple Super Serial card installed in slot #1.

10
20
30

40
50
60

70

80

90

100
110
115
120
130
140
150
160

170
180
190
200
210
220
230
240
250

GOSUB 250: GOTO 170

A$=M$(N)+K$+"1"+CHR$(13)

FOR J=1 TO LEN(A$): WAIT ST, S: POKE DA, ASC(MID$(A$,J,1)):
NEXT J: RETURN

WAIT ST,R: W=PEEK(DA)-32: RETURN

IF N=6 THEN 80

A$="1": GOSUB 30: GOSUB 40: FOR I=5 TO 0 STEP -1: A(l)=0: IF
W>(2A1)-1 THEN A(l)=1: W=W-(2AI)

NEXT I: W=A(5-N): RETURN

A$="J": GOSUB 30: GOSUB 40: IF W>32 THEN W=1: RETURN

W=0: RETURN

IF K$="+" THEN K$="-": RETURN

K$="+": RETURN

A$=M$(N)+"X": GOSUB 30

GOSUB 20: GOSUB 50: IF W=0 THEN 120

GOSUB 100: CN=0

GOSUB 20: GOSUB 50: IF W<>0 THEN 140

GOSUB 20: GOSUB 50: CN=CN+1: IF W= 0 THEN 150

CN=INT(CN/2): GOSUB 100: A$=M$(N)+K$+STR$(CN)+CHR$(13):
GOSUB 30: NEXT N: END

FOR N=3 TO 6: K$="-"

A$=M$(N)+K$+"40"+CHR$(13): GOSUB 30

GOSUB 50: IF W=0 THEN 115

A$=M$(N)+"2": GOSUB 30: GOSUB 40: IF W<40 THEN 180

IF W<=PW4+1 AND W>+PW-1 THEN CN=CN+1 GOTO 230

PW=W: CN=0: GOTO 180

IF CN<10 THEN 190

GOSUB 100: CN=0: GOTO 180

DA=49304: ST=DA+1: CO=ST+1: CL=CO+1: S=16: R=24: POKE
ST,0: POKE CL,190: POKE CO,101: M$(3)="E": M$(4)="D""
M$(5)="C": M$(6)="B": RETURN

Page 10-2

XR Owner's Manual

HARD HOME ROUTINE FOR THE IBM PC

10
20
30
40
50
60
70
80

30

100

110
120
130
140
150
160
170
180

190
200
210

220
230
240
250

280
270
280
290
300
310
320
330
340

OPEN "COM1:9600,E,7,2,CS,DS,CD" AS #1
M$(0)="E": M$(1)="D": M$(2)="F"
M(0)=4: M(1)=2: M(2)=8 .
CT=0
FORN=0TO 2
K$="-":1=0
I=i+1: PRINT #1,M$(N);Kg;"50"
IF N=0 AND K$="-" THEN PRINT #1,"D+50": PRINT #1, "C+40™:

CT=CT+1
IF N=1 AND K$="-" AND CT>0 THEN PRINT #1,"C-40":
CT=CT-1
GOSUB 310: IF W THEN 110 ELSE PRINT #1,M$(N);"X";:
GOTO 180

PRINT #1,M$(N);"?";
GOSUB 330: IF W>27 OR W<0 THEN 160
CN=0
IF N=2 AND =20 THEN GOSUB 280
GOTO 70
IF W=PW THEN CN=CN+1 ELSE PW=W: CN=0: GOTO 100
IF CN=10 THEN 1=21: GOSUB 290: GOTO 70 ELSE 100
PRINT #1, M$(N);K$;"1": GOSUB 310: IF W THEN GOSUB 290:
CN=0 ELSE 180
PRINT #1, M$(N);K$;"1": GOSUB 310: IF W THEN 190
PRINT #1, M$(N);K$;"1": GOSUB 310: CN=CN+1
IF W THEN CN=INT(CN/2): GOSUB 290: PRINT #1, M$(N);KE;
STR$(CN) ELSE 200
IF N<>1 THEN 270
FORL=1TOCT
PRINT #1,"C?";
GOSUB 330: IF W>27 OR W<0 THEN
240 ELSE PRINT #1,"C-40"
NEXTL
NEXT N
END
IF K$="+" THEN K$="-" ELSE K$="+"
RETURN
PRINT #1,"I";: GOSUB 330: W=W AND Ii(N)
RETURN
IF LOC(1)=0 THEN 230 ELSE W=ASC(INPUTS(LOC(1),£#1))-32
RETURN

Page 10-3

¥R Owner's Manual

AFPENDIX

A TUTORIAL ON
DC SERVOS and OPTICAL ENCODERY

SUMMARY

The heart of any robotic system is the seivo motors that run it. This section describes
servomotors and encoders and discusses the system used by the Rhino XR Robot.

SERVOMOTORS.

Servomechanism (sur-vo-mek-e-niz-em) n. A feedoback system that consists of a sensing
element, an amplifier and a servomotor used in the automatic control of a mechanical
device.

So, in the broadest sense, a servo system is any mechanical device that is controlled by
an error signal. By this we mean that a small signal is somehow used to cause a much
larger device to be controlled. An amplifier is used to magnify the small signal. In this
context, an electrically operated switching relay is probably the simplest device that can
be described as a servo. The human being provides the error signal. The human brain
knows when it is time to turn the signal on. This relatively weak signal in the brain
actuates the human arm and hand. This is one stage of amplification. They in turn turn
on the switch. The switch provides power to the coil that pulls in a set of contacts. The
contacts control something much larger than the switch itself could handle. This is such
a common servomechanism that we normally don't even think of it as a servo.

Another servo system that we have all seen used is the power steering system in an
automobile. Though the system works even when the hydraulic system breaks down,
the effort then required is very large, and the only reason that the system works without
hydraulic assist is that it has to be designed for inherent safety. The design is such that it
allows you to control the car even if the system fails. Actually the system is designed to
follow the error signal that the steering wheel provides. A system of valves allows the
hydraulic fluid in the system to assist the turning of the wheel. You provide the error
signal when you start to turn the wheel. The hydraulic sysiem provides the larger force
needed to steer the car.

Page A1-1

XR Owner's Manual

Actual positon COMP ARATOR

information
POSITION __——<'I:l
ENCODER =

Desired
If I Error Position .
Signal information
OTOR P AMPLIFIER
Power

THE SERVO LOOP

Another servo system that, is in common use is the automatic speed (cruise) control
system in a car. In this system, we set the desired speed and the cruise system then
modulates (increases and decreases) the position of the throttle (gas pedal) to maintain
the set speed. There is no need for human interference, except to start and stop the
system.

The system is designed so that it will keep adding to the throttle position as long as the
car is not going fast enough and will keep subtracting from the throttle position as long as
the car is going faster than the desired speed. We call this an integrating control
scheme. We are integrating the error signal over time to correct for the error. Integrating
the signal gives us better control.

If we had linear or proportional control, we would fix the throttle setting at the given
position, that gave us the desired speed, and then not move it. This would work weli on
a straight and level road if there was no wind. However, the car would slow down on
every uphill stretch of road and speed up on every downhill stretch.

Integrating control is necessary to compensate for varying load conditions; as the load
increases, we increase the power by responding to the error signal. Integrating the error
signal over a period of time allows for better response because it effectively increases
the magnitude of the error signals received.

We have a similar problem when we pick up loads of different weights with a robot. The

electrical energy needed to pick up the arm itself is much less than the energy needed to
pick up a heavy load at the same speed. Some scheme has to be devised to change the
energy level as necessary.

The problem of moving a robot arm consists of starting, running and stopping the motor

Page A1-2

¥R Owner's Manuel

within a specified time-distance framework. Put another way, the motor has to do the
following basic things:

Maintain its stopped position. (Provide & holding torque.)
Start smoothly and come up to speed.

Maintain the specified speed under varying load conditions.
Slow down when nearing the destination

Stop at the predetermined point

Maintain the stopped position.

ok~ wp -

Here we are discussing simple straight line motion on a simple robot. As geometries
and sophisticated requirements are added, other factors come into play. Some of these
can be enumerated as follows:

1. Calculate exact path requirements

> Monitor load and encoders to determine if & stall condition or an overload
condition has occurred.

3. Respond to speed changes in mid motion.

4. Do look ahead calculations to determine effect of robot geometry on motion
path.

5. Merge one move with another.

Servo systems, and thus robots, use a number of techniques to meet the above
requirements. The two basic requirements are {0 determine how fast a servo motor is
spinning and how far it has spun. In orderto determine these two pieces of information,
we need time information and distance information.

Time signals are generated within the robot/controller system by an internal clock that
runs the microprocessors. The distance information is normally obtained from encoders

that are attached to the mechanical robot system. The information is combined in the
processor to determine the speed of the system.

ENCODERS

In general there are three types of encoders in use tor cbtaining positional information:
1. Incremental encoders
2. Absolute encoders
3. Combination of the above.

Incremental Encoders: The simplest encoder is the :cremental encoder. This

encoder consists of a series of transparent and opague windows and a couple of

Page A1-3

XR Owner's Manual

sensors that provide a two phase signal as the encoder moves. The two phases "A" and
"B" are 90 degrees out of phase with one another. When "A" leads "B", the motor is
turning in one direction and when "B" leads "A", the motor-encoder system is turning in
the other direction. Thus we have a way of determining direction. The actual cycles that
one signal goes through over a period of time determines how far the encoder has
moved. Incremental encoders can provide up to 1,000 pulses per revolution.

1¢ N - -
B ¢ 360 —>|-——14— 90
| |

INCREMENTAL ENCODER SIGNALS

Absolute encoders: When the absolute position of a shaft is needed, an absolute
encoder is used. Absolute encoders have a series of rings on the encoder plate with
each ring having graduations that are twice a fine as the one inside it. The system has
the advantage of giving the user the position of the shatft at all times without any
calculations or doing a home routine. Absolute encoders with upto 16 rings of binary
coding are available. These encoders can give the position of the shaft to within
1/63,536th of a revolution (1 part in 2416).

Page A1-4

XR Owner's Manual

A -
B =
C 3 ST -
D | il i
i §

-
B ——
5 i
b F §

I | l |

ABSOLUTE ENCODER SIGNALS

Combination units: Combination encoding schemes consist of using a coarse
absolute encoder and then keeping track of how many times the unit has gone around.
They provide the advantage of not having to look at an incremental encoder at all times.
(ie less frequently without missing a count)

These three encoder schemes all provide positional information. That is how we
determine distance. By dividing the distance by the time we get the speed of the system.
By making the calculation often, we can keep close tabs on the system.

Now that we have a way of knowing how fast our servo is running and how far it has
traveled, we need some way of controlling its speed. The speed of a motor can be
controlled by changing the amount of energy that is sent to the system over a period of
time.

There are two basic ways to change the amount of energy being sent to the motor. We
can do it either digitally or with a linear analog scheme. Linear modulation means that
we will change the actual voltage that we apply to the terminals of the motor. The higher
the voltage, the faster the motor will

XR Owner's Manual

LINEAR
100 AMPLIFIER
| -
o
-’
o
£
S
o
[}
2
n 0
0 Power to motor 100

turn.

Digital control usually means that we will apply a relatively fixed voltage 1o the system,
but we will vary how long we apply the voltage to the motor terminals during an interval
of time. Thus, if we wanted the motor to run at about half speed, we would apply power
to it about half the time and turn the motor off the other half of the time. We would vary
the width of the pulse that determines how much power we were applying. This is called
pulse width modulation. Most modern servos, that are controlled by computers, use

a pulse width modulation scheme (PWM) to control the energy to the motors.

When the power to a motor is applied and turned off rapidly, noise can be generated by
loose parts in the motor. The magnetic fields move the loose parts back and forth. Most
human beings can hear sounds that are at from 20 to 20,000 Hertz. In order to avoid this
problem, most modulation schemes use a frequency that is between 14,000 and 20,000
Hertz. That means that the power to the motor is turned on and off 20,000 times during
every second.

Page A1-6

i

XR Owner's Manual

One cycle
ON I '
OFF h -l -l -] -‘ -i Slow
ON
OFF Medium
ON
OFF | | Fast

PULSE WIDTH MODULATIGN

In the computer, the firmware programmer creates a free running counter that takes
about 1/20,000th of a second (50 microseconds) to go from 0 to its full value. The
program compares the value in the counter to a consiant in memory; if the value in the
counter is higher than or equal to the constant, the power is turned off, if it is lower, the
power is turned on. The energy to the motor is thus controlled by and directly
proportional to the value of this constant.

As an example, let us assume that the counter counts from 0 to 255 over and over again
at all times. Let us further assume that the constant has been set to 127. As the counter
goes from 0 to 127, the power will be on. As soon as the counter reaches 128, the power
will turn off. 1t will remain off till the counter reaches 255. As soon as the counter resets
to 0, the power will come on again. This will give us a 50% duty cycle and will run the
motor at about half speed. If we set the constant 10 0, the power will remain off at all
times because the count will never be less than the constant. If we set the constant at
255, the power will be on almost all the time. The counter will be less than 255 at all
times except when the counter is actually at 253.

The circuits that are used to compare the values and switch the power are not within the
scope of this manual. The intent of the manual is to give you an understanding of how
these controls are implemented. You need to understand that there is a way that @
number can control the power going to a motor. In the above example there are 256
(from 0 to 255) power settings for the motor. Each would give a free running motor a
slightly different speed. The computer uses the numbers (settings) in the register 10
control the motor.

Page A1-7

XR Owner's Manual

Ramp speed up

Maintain speed
f Ramp Speed

[z

Time

Speed

SPEED/ TIME RELATIONSHIP

The most usual mode of operation for a motor is to first accelerate the motor uniformiy till
it reaches its target speed. Once the motor is at it's target speed, the computer maintains
the speed till it is within a specified distance from it's target destination. The motor then
slows down or decelerates so that it can stop at its destination. The acceleration and
deceleration portions of the movement are said to be ramped. Ramping the motors
allows them to start and stop without a jerking action. The ability to maintain a target
speed allows all motors to start and stop each move at the same time.

The computer controls the motor speed at any time by estimating the distance the motor
should have travelled in the allocated time. |f the motor has travelled too far, the
computer decreases the power t0 the motor by decreasing the number in the speed
register. If the motor is falling behind, the computer increases the power 10 the motor by
increasing the number in the speed register. Since the computer can check the motor
position hundreds of times & second, very precise control can be maintained.

Page A1-8

XR Owner's Manual

@
STOP
'y
i Slower *
‘t‘
-
Faster
[

SIMPLIFIED LOGIC DIAGRAM

Other control functions can be tied into the control of the motor. The following examples
show some typical applications:

1. lfthe speed register is set to full power (255) and the motor still
cannot maintain its position, an overload condition is signaled. The
robot stops. The error condition is annunciated.

5 If an encoder is not moving at all, a stall has occurred and the robot is
stopped. The stallin annunciated.

Industrial robots usually use one microprocessor to control each motor. The Rhino XR
system uses one microprocessor to control the entire system which consists of eight
motors, the 1/O and the communications. As a consequence of this, the XR
microprocessor cannot perform all the functions that the more sophisticated industrial
systems can provide. However, a limited ramping function is provided on all motors on
the XR system. The motors start at full speed. Ramping occurs only as the motor is
stopping. This allows the motors to come to a stop more effectively. Speed control is not

implemented on the XR system.
THE USE OF ENCODERS ON THE XF SYSTEM.

The encoders used on the XR system are incremental encoders. Each consist of an
aluminum disk with light and dark bands placed radially on one side. Two reflective

Page A1-9

XR Owner's Manual

optical sensors are located to detect the different bands and placed so as to produce two
signals (A and B) which are 90 degrees out of phase. The large motors (C-F) have six
dark and six light bands per revolution; the remaining motors have 3 sets of bands.

When the A signal leads the B signal, the motor is moving in one direction and when the
A signal trails the B signal, the motor is moving in the other direction. The logic in the
controller is arranged to be able to make the necessary discrimination.

Given that there are two signals from the encoder, there are four states that the
incremental encoder can provide. They are 00, 01, 11 and 10. Note that if these were
interpreted as decimal values, the flow is from 0 to 1 to 3 to 2 and back to zero, not 1,2,3
and 4. Also note that it is not possible to go from 00 to 11 without going through one of
the intermediate states and that it is not possible to go from 10 to 01 without going
through an intermediate step. These are called forbidden states and if these changes
occur, they indicate an error in operation.

00

01 10

11

ENCODER STATES

A counter can be set up using either 1, 2 or 4 positions of the encoder. If we pick one
position, we would increment or decrement the counters only when the states went all
the way around the above diagram. This method is used in the Mark Ill controller. If we
picked two positions, we would increment or decrement the counters whenever the state
changed from one side of the diagram o the other side of the diagram. If we picked four
positions, we would change the encoder count every time the state changed.

The controller uses eight registers in its memory as error registers for the motors. As
long as a register is zero, the motor has no power applied to it. If an encoder turns, the
register is added to or subtracted from as needed. As soon as the controller sees a
number in the error register, it applies power to the motor in a way that will turn itin the

Page A1-10

XR Owner's Manual

direction that will decrement the register as the motor turns. This is the holding algorithm
that maintains motor position at all times.

When the controller receives a START command from the host computer, it adds the
given number to the motor error register. This has the effect of making the controller start
the motor in a direction that will make that error register go to zero. Each cycle of the
encoder changes the error register by one.. When the error goes to zero, the motor is
turned off. 1f the motor overshoots, the power to the motor will be reversed automatically
to bring the motor back to the zero position.

With the XR-3 robot, the large motors have 6 detectable states per motor revolution and
the small motors have 3 states per revolution.

Page At-11

o

| Hombio
XR-3 Series

feach Pendant

Aluminum case

Distance keys

Because they offer so many
advantages, teach pendants
are widely used for the “lead

through programming” of
robots. One major advantage is
the ease of use of the teach
pendant as compared to any
other form of programming. With
a teach pendant, an operator
can control a robot without

having any knowledge of a

formal programming language.
This makes teach pendant use
ideal for groups such as
maintenance and repair
personnel, beginning robotic
students, and robotic operators
who do not necessarily need to
know how to program a robot,
Rhino's Mark lil teach pendant
enables students and

Power on Indicator

Digital display

Keys for confrol of
8 optically
encoded motors

Keys for control of
8 output lines

Keys for reading of
8 Inpuf lines

Keys for control of
2 auxiliary,

. non-encoded ports
\\

workers fo master teach
pendant programming along
with other robotic concepts. It is
a sophisticated and powerful
device that enhances the
instructional potential of the XR
Series robotic system.

This latest version of the teach
pendant is designed to provide
Rhino users with exciting new
functions, allowing full control of
the IO of the Mark Il controlier
for varied applications. Many
new commands have been
added, so that all the keys, (with
the exception of the shift key),
now serve multiple functions. In
addition, the number and
variety of displays has been
increased to give the user
additional feedback.

RHINC

ROBOTS, INC
—————— _ wewld leaden in imsbhuctional whelics e

XR-3 SERIES TEACH PENDANT

The Rhino Mark lll teach pendant has its own stand-alone computer
located In a separate case or bullt Into the XR controller as a
combination unlt. This hand held input device has many of the fea-
tures of its industrial counterparts and additlonal features that are
specifically designed for instructional purposes. Pictographs on the
motor move keys are immediately understandable and help to
infroduce newcomers wlithout prlor programming experience to
basic principles of robot operation. These and other features make
the Rhino Mark lil teach pendant the premier instructional model on
the market today.

FEATURES

TRAINING TRANSFERS EASILY — Operation of the teach pendant is
very similar to that of industrial teach pendants so that training willl
fransfer easily.

|/O CAPABILITIES — Using the new teach pendant, Rhino users can
control the I/O of the Mark Ill controller for extenslve workcell experi-
mentation. The teach pendant operator can control 8 ports for
encoded motors, 2 ports for non-encoded motors, responds to 8
additlonal inputs, and controls 8 output lines.

VERSATILE — The Mark Il teach pendant, with Its I/O capabilities, is
designed for a variety of applications. Because it enables students to
operate a robot without getting involved in the complexities of off-
line programming, it is an ideal introduction o robotics. Students
may use the teach pendant to develop complex move strategies. It
may also be used in conjunction with Rhino’s RoboTalk™ or Rhino-VAL*
software, to enter points info computer programs. These capabilities
make It exceptionally useful for workcell development.

WIDE ARRAY OF EDITING FEATURES — UsIng the Mark Il teach pen-
dant, Rhino users can edlt programs to delete moves, insert moves
and step forward or backward through a program.

EASY TO USE — The many user friendly features of the teach
pendant allow anyone to learn how to perform very basic move
strategies after just a few minutes of Instruction. Since the computer in
the teach pendant is transparent to the user, operators do not need
to know how to use a computer In order to operate the robot with the
teach pendant.

SOPHISTICATED — Sharing many of the characterlstics of a frue
industrial pendant, the Mark Il teach pendant is the most complete
educational teach pendant on the market foday. Possibllitles for
experimentation with the teach pendant and Its /O capabilities are
virtually endless.

DIGITAL DISPLAY — The 7 segment LED’s on the Mark lil teach
pendant provide constant feedback to the student, emulating the
feedback generally available on an industrlal teach pendant. The
display presents continuous updates on each motor by encoder
counts. The display also provides helpful messages such as remind-
ing the operator to do a hard home before beginning a learned
move seguence, Informing the operator If a motor has stalled during
a move, and warning the operator when the move buffer Is almost full.

COMPREHENSIVE MANUAL — The teach pendant manual Is Ideal
for classroom use. It contalns a lengthy sectlon on the strategies and
principles of teach pendant programming along with tutorial
examples and a full discussion of teach pendant capabillties and
feedback displays.

* VAL is a trademark of the Unimatlon Corporation.

Rhino has representatives throughout the USA, Canada
and a large number of other countries. Please call or write for
the name of the representative in your area.

Rhino Robots, Inc.

308 South State Street

P.O. Box 4010

Champalgn, lllinols 61820 USA
Telephone 217-352-8485

TELEX: 3734731 RHINO ROBOTS C

Model | Mark lil Teach Pendant
Part Number FG1069 (with circuitry built Into Mark Iif
controller) and FG0649 (with circultry in
separate cablnet)
Construction Machined from solid aluminum for
strength without welght, hand held
casels4” x7” x 4" (101.6 mm x
177.8 mm x 25.4 mm)
~ System | 6502 microprocessor based —
Power 110/220 volts, 50/60 Hz
Touch Panel 32 pressure sensitive keys, motor move
keys with pictographs.
Display Real time digltal display. 7 segment
LEDs display up to 7 characters
simultaneously.
Continuous Mode, motor, directlon of movement,

Feedback Features

number of motor counts — current
motor, current move, number of current
move in move sequence, special
messages, e.g. do hard home,

buffer full,

Modes of PLAY for manual mode
Operation LEARN for programming a move
sequence
EDIT for modifying a learned move
sequence
RUN for executing a move sequence
Capaclty J 149 moves of 8 motors plus I/O
Special /O AUX OUTPUT — Controls the 2 auxiliary

and Program

motor ports (on/off).

Control Functions

JUMP ON INPUT — Directs the program
fo a given program sequence when or
if an Input occurs. (condltional jump).
UNCONDITIONAL JUMP — Directs the
system to a glven program segment.
WAIT INPUT — Dilrects the robot to WAIT
for a glven Input signal before
executing the next step.

NO WAIT INPUT — Allows pulsing of the
outputs of the Mark lIl controller.
TOGGLE OUTPUT — Allows the pulsing of
the outputs of the Mark Ill controller,
TURN OUTPUT — Controls the level of the
outputs of the Mark Il controller
(high/low).

END — Ends the present mode, when in
the LEARN, EDIT, and STALL modes. In
the STALL mode, the END mode
acknowledges the STALL message and
takes you out of the stall trap.

Other Features

Includes upload/download software for
Apple lle and IBM PC on diskette. Teach
pendant manual.

Rhino Robots Inc. reserves the right to change any and all

ROBOTS,

speciflcations and prices without prior notice.

RH I N&
| N C.

i

ENGINEERED AND
MANUFACTURED
IN THE USA

SS-1069

MARK i
TEACH PENDANT

OWNER'S MANUAL

Version 3.00 September 1st, 1986

RHINO ROBOTS INC.

Manual Part Number Documentation Services,
€5-60-872 Rhino Robots Inc.

P. O. Box 4010,
Authors Champaign, lllinois. 61820
H. S. Sandhu U. S. of America
Carl Phillips Tel: 217-352-8485.
Tom Hendrickson Telex: 3734731 RHINO ROBOTS C

Copyright 1986. Rhino Robots Inc. All rights reserved.
Patents applied for.

s -

"

a

Teach Pendant Manual Page 1

CREDITS

The hardware for the teactrpendant was designed by Carl A. Phillips, BS Electrical
Engineering, University of 1llinois.

The firmware in the teach pendant was designed and written by Carl Phillips, BS
University of lllinois. Tom Hendrickson helped with the firmware.

Tom Hendrickson checked the software and helped draft parts of the manual.

Harprit S. Sandhu wrote the manual.

Page 1 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL 61820 USA

Teach Pendant Manual Page 2

TABLE OF CONTENTS
Page
SECTION 1
INTRODUCTION 1-1
THE RHINO ROBOT TEACH PENDANT SYSTEM 1-2
SETTING UP 1-3
THE TEACH PENDANT KEYBOARD 1-5

USING THE TEACH PENDANT 1-7
INITIAL DISPLAYS 1-7
THE STRUCTURE OF THE TEACH PENDANT SYSTEM 1-7

SECTION 2

PLAY MODE 2-1
THE FUNCTION OF PLAY MODE 2-1
DISTANCE KEY 2-3

LEARN MODE 2
PRELIMINARY STEPS 2
SETTING THE "SOFT HOME" 2
TEACHING SINGLE MOTOR MOVES 2
RUNNING YOUR SINGLE MOTOR MOVE PROGRAM 2
TEACHING MULT! AXIS MOVES 2
RUNNING MULTI AXIS MOVES 2

SECTION 3

EDIT MODE 3-1
FUNCTION OF THE EDIT MODE 3-1
AN EXAMPLE 3-2
USING THE NEXT MOTOR AND PREVIOUS MOTOR KEYS 3-3
CHANGING MOTOR POSITIONS 3-6
THE NEXT MOVE/PREVIOUS MOVE KEYS 3-7
INSERT MOVE/DELETE MOVE KEYS 3-9

Page 2 ' Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL 61820 USA

Teach Pendant Manual Page 3

SECTION 4
CONTROLLING AND USING I/O 4-1
AUX PORTS 4-3
OUTPUT PORTS 4-5
WAIT ON INPUT 4-8
PROGRAM FLOW CONTROL 4-9
SAVING AND LOADING A PROGRAIV 4-13
THE STALL ROUTINE 4-15
SECTION 5
UNSHIFTED KEY FUNCTIONS 5-1
SHIFTED KEY FUNCTIONS 5-18
SECTION 6
PENDANT DISPLAYS 6-1
APPENDICES
APPENDIX | THE MOVE BUFFER DATA FORM/.T A-1
APPENDIX Il INSTRUCTIONS FOR SAVE/LOAD A-6
APPENDIX Ill SPECIAL FUNCTIONS A-9
APPENDIX IV GENERAL OPERATING NOTEE A-13
Page 3 Teach Pendant Vers. 3.00

Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL 61820 USA

Teach Pendant Manual Page 1-1

CHAPTER 1

INTRODUCTION

Teach pendants are widely used for the "lead through" programming of robots because
they offer many advantages. Prime among these is the ease of use of the teach pendant
as compared to any other form of programming. All teach pendants are similar and
usually use a readily understood pictorial language that can be mastered within a short
time. Programming from a host computer often requires familiarity with manufacturer
specific robotic languages such as VAL™ or Karel™. Each language contains many
different commands and requires considerable study before an operator can become
familiar enough to control a robot with ease.

With a teach pendant, an operator can control a robot without having any knowledge of a
formal programming language. For example, a company wishing to automate a painting
operation, could easily train an experienced painter to set up a move sequence with a
teach pendant even though the painter may nct be able to program the robot with its
robotic language. On the other hand, a competent computer programmer may not know
enough about painting to handle a complicated painting assignment even though he is
very familiar with the language of the robot. Usually the skills of both individuals are
necessary to do the job well.

Another important group that makes heavy use of teach pendants are maintenance and
repair personnel. They need to conduct extensive tests of robot motion but do not
necessarily need to create a complex move seguence from a host computer requiring
formal programming skills. With a teach pendant, they can exercise all the axes and
conduct most trouble shooting operations without being trained programmers.

Another advantage of a teach pendant system is that the pendant computer is
transparent to the user. Since many people are still fearful of computers, it is often
helpful to introduce them to robot operations without discussing the computer that is part
of the teach pendant system. The Rhino Robots teach pendant system includes an 8-bit
microprocessor but the user does not need to be aware of its presence.

The Rhino teach pendant is the ideal tool for a rapid, hands-on introduction to the XR
robotic system in particular and to robots in general. With the teach pendant, novices are
able to begin operating the robot after just a few minutes of preliminary instruction.

Page 1-1 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-2

THE RHINO ROBOTS TEACH PENDANT SYSTEM
The Rhino Robots teach pendant'system consists of the following major components:

1. A 32key, hand held pendant in a metal case. The pendant is provided
with a cable for connecting to the teach pendant computer.

2. A microprocessor based computer card that forms the heart of the teach
pendant system. This can be mounted either in a separate cabinet orin a
combination cabinet together with the XR controller.

3. A software disk containing the SAVE/LOAD program for saving and
recalling move sequences to/from a host computer system.

4. This manual.
The SAVE/LOAD program is described in detail in Appendix Il.
In addition to the above, you should also have the following items:
1. A cable to connect the teach pendant control computer (not the hand held
part) to the robot controller. [f you have the Mark I combination controller

with a built in teach pendant system, you will not need this cable since a
built in switch provides this function.

Page 1-2 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-3

SETTING UP TO USE THE TEACH PENDANT

Unpack the teach pendant carefully and make sure that you have every item listed in the
previous section.

Check that the power is off before hooking up the teach pendant system. This is a good
general rule whenever you are working with electronic components.

Set up the teach pendant system according to the configurations shown below.

=] 32 Key hand held

0ooo
Host gond| Tesch Pendant
Computer poan
coog
Flst Cable . Mark Il controller

: b with 1/0

[4 i

[] 2 wh ba
SEEREEEEEEEEEEEEE Emm_tm] ¢
ngugggunuunnunuu | wmm|
ooBREREEEEEagasd L. ——

RS-232C___ _____ "\ Mode Switch in Teach

Pendant Position

FIGURE 1-1
Configuraticn of Mark Il Combo Controller with /O

Page 1-3 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South Siate Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-4

32 Key hand held
Teach Pendant

ppoooooof)

poooooog

poooooog
T=lelsis{s]s]

Host

Separate Teach
Computer

Pendant Cabinet

t

zs] &

I i)) 5]) I)

1 ooofl g

RC sWe————y

Mark Il controller

FIGURE 1-2
Mark 11l controller with separate Teach Pendant cabinet.

With the Mark 1Il combo unit, you can keep both the teach pendant and host computer
plugged in at all times. To change control from the teach pendant to the host computer
simply flip the mode switch on the left hand side of the controller's front panel.

The teach pendant is a stand alone device. This means that it does not require a host
computer to allow you to use the robot with it. However, if you want to save programs
that you have "taught" the robot with the teach pendant, you will need a host computer to
store the programs. Plug the host computer into the appropriate port of the controller.
Use your disk with the SAVE/LOAD program (in the host computer) to save your teach
pendant programs. The programs are saved on the disk of the host computer system.

Page 1-4 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-5

THE TEACH PENDANT KEYBOARD

The teach pendant display panel is shown below.

OFF ON
Go Hard Sel Soft 1 1
Home Home
4——)- GRIP
LEARN / Go Solt + +
ENTER Home A A
H 2
® Uner DELAY
— b WRIST
AUN/ EDIT ROTATE
HALT B B
DELETE ERASE / 3 3
Move Clear WRIST
INSEAT ENO/ FLEX
Move PLAY [<
Pravious Pravious 4 4
Move Molar ELBOW
Next Nexl FLEX
Move Molor D o
Control b 5
LOA,
S To Host T SHOULDER
Aux - FLEX
- Quiput E E
No WAIT Jump On 4 &
Inpul Input — f— WAIST
WAIT Jump To ROTATE
Input ‘| Program F F
Toggie Goaub On 7 7 AUX
Quiput lnpul
—— 4| MOTOR
TURN Gousub g
Qulpul Program G G
1 T Ll
- AUX
Slow
SHIFT = —— 4—~~| MOTOR
Fast - H "H"

L . + RESET _/,

FIGURE 1-3
Teach Pendant Keyboard

Page 1-5 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-6

The small, round light at the upper right corner of the teach pendant indicates that the
power is on. Immediately below is a display consisting of seven 7-segment LEDs. This
display provides information to the operator about what is happening in the system. As
we describe the use of the teach pendant, we will tell you what the different displays
mean. You will find the information in the displays especially helpful when you are
editing a move sequence.

The 32 keys on the teach pendant keyboard can be divided into two parts. The two
columns on the left (16 keys) are the FUNCTION keys. The two columns on the right
(16 keys) are the MOTOR MOVE keys. However, notice that all keys except the SHIFT
key serve more than one function.

The keyboard follows the structure of the XR robot, moving from the fingers to the waist.
The keys correspond to the motors, designated A through H, on the controller.
Specifically,

MOTOR SERVICE

finger gripper.

wrist rotation.

wrist flex. (azimuthal)
elbow flex.

bicep flex.

waist rotation.
accessory

accessory

T GHOMMOOow>»

Keys that have a horizontal dividing bar in them are dual function keys.
Pressing the key alone will activate the lower function. If the key is
pressed while holding the shift key down, the upper function will be
activated.

Page 1-6 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 1-7

USING THE TEACH PENDANT
INITIAL DISPLAYS

Whenever you power up, the word "init" appears in the display momentarily. After the
display blanks out, the gripper is closed and then set to it's fully open position. The
system then displays the letter "P" at the left of the display. The system has now entered
the PLAY mode. This process is repeated whenever the system is turned on or reset.

THE STRUCTURE OF THE TEACH PENDANT PROGRAM
The teach pendant has four modes of operation: PLAY, LEARN, EDIT, and RUN.

PLAY. In PLAY you can try out various motor moves and get a feel for
running a robot.

LEARN. You may teach the robot a designated sequence of moves in
the LEARN mode.

EDIT. You use the EDIT mode to make modifications and fine tune
the sequence you have taught.

RUN. You run the taught cycle in the RUN mode.

You can save a program using the SAVE routine and reload a saved program with the
LOAD command. (A host computer is needed for these functions). Finally, the teach
pendant program has a special STALL routine which helps you to recover from a
situation where the system is blocked from carrying out a designated move sequence.
You can do this without losing the move seguence that the system was being taught.

Figure 1-4 below shows how the modes interzct with each other. Notice that you always
go through the PLAY mode when you switch irom one mode to another.

Page 1-7 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 Soutih izie Street, Champaign, IL. 61820 USA

Teach Pendant Manual

Page 1-8

PLAY
3|t ¥t (T 3T ¥t
SAVE LOAD LEARN RUN EDIT

FIGURE 1-4

Mode transfer protocol

Figure 5 shows how the four main modes interact with the STALL TRAP routine. Except
when the system is in RUN mode, it can always go back to its prior mode from a STALL.
If a STALL occurs while you are in RUN mode, you have to go into PLAY mode before
you can go back to RUN. This means that you must start your program from the

beginning again.

Page 1-8

STALL TRAP STALL TRAP

1t | ¥t 1 It

RUN PLAY EDIT LEARN
FIGURE 1-5

Stall trap interaction

Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-1

SECTION 2
PLAY MODE

THE FUNCTION OF PLAY MODE

After you turn the system on and the "init" message disappears, the letter "P" will appear
in the left digit of the display. This indicates that the system is now in the PLAY mode.
PLAY mode is useful for practicing robot movements and positions. You can test the
reach of the robot and find out how best to get to a designated location. This is the mode
that you use to familiarize yourself with the robot and to work out operational schemes for
the robot.

" RHIND . W

l

R

The 16 keys that cantrol
the & rotor ports

|

Figure 2-1
The 16 motor move keys

In the PLAY mode, all the motor move keys in the two right hand columns are active. By
pressing any of these keys, you move the corresponding motor on the robot (or
connected accessories). If a motor is not connected to a motor port, the teach pendant
detects this condition upon power up and reset and automatically disables the two keys
controlling that motor port. If a disabled key is pressed on the pendant, the pendant will
display the "OFF" message.

Page 2-1 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

=

Teach Pendant Manual Page 2-2

(" RHINO .)

The keuys that control the
“G"and "H" motors

Figure 2-2
The "G" and "H" motor move keys

The four motor move keys at the bottom are used only if you have motors connected to
ports "G" and "H" of the robot controlier. Any of the motorized Rhino accessories such as
the conveyor, carousel, slide base, or X-Y table, can be plugged into the "G" and/or "H"
ports. Pressing the corresponding keys moves the accessories in the same way as the
motors on the body of the XR robot. Keys for the "G" and "H" motors or any of the other
motors that are not connected will put the "OFF" message in the display when they are
pressed. This tells you that the motors are not active.

When you keep your finger pressed on a motor move key, the AUTO REPEAT function
becomes active. The motor moves smoothly and continuously until you lift your finger
from the key.

As you press the motor move keys, you will find the robot movement reflected on the
keypad display. For instance, if you rotate the wrist joint (B motor) counter-clockwise 120
steps, the display will show Pb 0120 (assuming that the B motor started a 0 location); this
means that the device is in PLAY mode and that the "B" motor has traveled 120 encoder
counts in the positive direction. The display always shows absolute not relative

position. The only exception is the gripper (end effector) which has only two settings,
open or closed. This simulates the operation of a pneumatic gripper.

Page 2-2 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-3
DISTANCE KEY

The key at the lower left of the pendant with the numbers 1 and 10 is used to set the
distance moved by a motor with each key press. The 10 key means that a motor will
move 10 encoder counts for each press of a motor move key. This is the most common
setting and is the default value.

" RHIND .)

7 — Key that controls the amount
of motion that takes place
with each keypress of & motor
rnove key.

L~ Show

JEQLILILJLJLILJ

10
Fast

Figure 2-3
The distance key

The "1" setting is activated by pressing the "1" key while pressing the "SHIFT" key. Use
the "1" key when you are fine tuning a move. For instance, you may want to use small
increments together with the auto repeat feature to achieve exact placement of the robot
gripper. The toggling of the motor can give the robot a slower, sometimes jerky action. It
should be used any time you are within an inch or two of your pick up or reisase point.

On start up and after a RESET, the 10 key function is selected. This selection is suitable
for most move functions and should be used most of the time.

Stalls: If, during a motor movement, the robot encounters an obstacle that prevents
further movement, the teach pendant will display the "Stall" message. The system will
automatically back away from the stall position. The system will clear the stall message
when the motor move key is released.

Page 2-3 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-4

LEARN MODE

PRELIMINARY STEPS

[RHIND .
| I I

LEARM/
EMTER

FIGURE 2-4
The LEARN Key

In the LEARN mode, the robot can be taught a set of moves that will be retained in
memory. Two things must be done before you enter the LEARN mode: CLEAR the
memory and send the robot to its HARD HOME position.

NOTE: CLEAR memory is only needed if a program is already resident and you don't
want to append to it. HARDHOME needs to be done only once.

To CLEAR the memory, push the SHIFT and ERASE/CLEAR key. Pressing the RESET
button does not erase a program already in memory.

Page 2-4 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-5

(" FHIMD "

GoHard
Home

Erase/
Clear

1L
||

— Fezet Button.

Figure 2-5
Keys used to initialize the robot/controller system
before entering the LEARN mode

A good hard home routine is one that successfully finds the B,C,D,E and F limit switches
on the robot. If the robot is in an unusual position or encounters an obstacle, it might not
be able to find hard home on the first try. If this happens, the display will show "noHArd"
and you simply repeat the hard home request. (Note: Mark Il users must manually home

the B motor). SCARA users should see Appendix Ill for hard homing their robot.

"Hard" home means "Hardware" home. It is used for initializing the robot to a known
position. After the GO HARD HOME command is given, the robot closes the gripper then
moves to find the exact center of the microswitches on the "B", "C", "D", "E", and "F"
motors and then fully opens the hand. These actions provide an absolute, repeatable
position from which the robot can LEARN a move sequence. You must do a HARD HOME
once after each RESET before the system will allow you to enter LEARN mode. In case
you forget, the display will remind you by telling you to "do HArd".

Page 2-5 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-6

Figure 2-6
The "hard home" position for the robot.

SETTING THE "SOFT HOME" POSITION

" RHIMO .)
Set Soft
Hormne
- Go Soft
e Home
~
Go Hard
| Harne
EEm

‘w—r«:ﬁ— Reset Eutton.

FIGURE 2-7
The SOFT and HARD HOME Keys

Page 2-6 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-7

The Soft Home" position is a robot position that is a convenient starting position for
creating a move sequence.

To establish a "Soft Home", or software home, move the robot into the desired
configuration and press SET SOFT HOME (Press SHIFT and SET SOFT HOME).
Thereafter, the robot will return to this position when ever the GO SOFT HOME key is
pressed.

The "Soft Home" position will be retained until the power is turned off, a new soft home
position is defined or the RESET key is pressed. From now on, when we refer to "Home",
we will always mean the "Soft Home". The "Soft Home" is concerned with all eight axes,
not just with the six that "Hard Home" refers to. On the "G" and "H" axes, the soft home
position will be the position that they were in when the SET SOFT HOME key was
pressed.

The use of "Soft Home" increases robot efficiency. It should be set at a location that is
convenient to the initial "pick up" position, about two inches above it, in most cases. The
"Soft Home" then becomes the actual starting point of the move sequence and the robot
will not need to return all the way to its "Hard Home" position when it runs a move
sequence.

The "Soft Home" position cannot be set unless the user has done a "Hard Home" first
(once). If the user chooses not to set a "Soft Home" position, the robot will treat the
"Hard Home" as the "Soft Home" and return to the "Hard Home" position whenever the
GO SOFT HOME key is pressed. If you cannot remember whether you have created a
"Soft Home" position or not, simply move the robot a few steps and then send it to SOFT
HOME. Ifit goes to "Hard Home", it is assuming that "Soft Home" and "Hard Home" are
the same position. Also, if the robot does not move when the GO SOFT HOME key is
pressed, you can assume that it is already in its "Soft Home" position and the display will
show "AtSoFt".

TEACHING SINGLE MOTOR MOVES

At this point you should be in the LEARN mode. If you do not have an "L" in the display,
press the LEARN key. That will put you into the learn mode.

Single motor move sequences are good for initial training and practice. Very quickly you
will be developing multiple motor move sequences, which are more like the real world.

For a single motor move, you simply press the key that corresponds to the motor you
wish to move until the robot has reached the position you want. If you overshoot, press

Page 2-7 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

Teach Pendant Manual Page 2-8

the key for the opposite direction until the robot is positioned correctly. Then, press
ENTER to record the move. Any back and forth motions that you may have made as you
position this motor will not be reflected in the recorded move. For instance, if you turned
clockwise -1000 encoder positions on the waist, motor "F", and then moved back 470
encoder positions, your move would be registered as an aggregate of - 530.

After you ENTER the "F" motor move, your display changes. When you began, you had

"L" on the left for LEARN and "0" on the right because no motor moves had yet been
entered. After the waist rotation, your display will read

r IEIGoRHE Position
I |

l__ Mode |— Direction

FIGURE 2-8
Learn, F motor, -530 position

Now when you record this move by pressing the ENTER key, the display will change to:

Move
Murnber

FIGURE 2-9
Learn, Stored position 1

NOTE: While the Enter key is being pressed, the display will show LEnt # (where # is the
move number being recorded).

If this was the only movement you wished for your sequence, you could complete the
cycle by pressing the GO SOFT HOME key, which sends the robot to the "Soft Home"
position. If you did this, the display would change to:

Page 2-8 Teach Pendant Vers. 3.00
Copyright: Rhino Robots Inc., 308 South State Street, Champaign, IL. 61820 USA

